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CHAPTER 1

Linear and multilinear algebra

In this chapter we will study the linear algebra required in representation theory. Some of
this will be familiar but there will also be new material, especially that on ‘multilinear’ algebra.

1.1. Basic linear algebra

Throughout the remainder of these notes k will denote a field, i.e., a commutative ring with
unity 1 in which every non-zero element has an inverse. Most of the time in representation
theory we will work with the field of complex numbers C and occasionally the field of real
numbers R. However, a lot of what we discuss will work over more general fields, including
those of finite characteristic such as F, = Z/p for a prime p. Here, the characteristic of the
field k is defined to be the smallest natural number p € N such that pl =14 ---4+1 =0 if such
a number exists, in which case k is said to have finite characteristic, otherwise k is said to have
characteristic 0. When the characteristic of k is finite it is actually a prime number.

1.1.1. Bases, linear transformations and matrices. Let V' be a finite dimensional
vector space over Kk, i.e., a k-vector space. Recall that a basis for V' is a linearly independent
spanning set for V. The dimension of V' (over k) is the number of elements in any basis, and
is denoted dimy V. We will often view k itself as a 1-dimensional k-vector space with basis {1}
or indeed any set {x} with = # 0.

Given two k-vector spaces V, W, a linear transformation (or linear mapping) from V to W
is a function ¢: V — W such that

(P(Ul + ’Ug) = (P(U1> + (p(’l}g) (’01, V2,V € V)7
p(tv) = tp(v) (t €k).

The set of all linear transformations V' — W will be denoted Homy (V, W'). This is a k-vector
space with the operations of addition and scalar multiplication given by

(o +0)(u) = @(u) + 0(u) (0,6 € Homy (V, W)),
() (u) = t(p(u)) = p(tu) (t € k).
An important property of a basis is the following extension property.

PROPOSITION 1.1. Let VW be k-vector spaces with V' finite dimensional, and {v1,...,vn}
a basis for V. where m = dimy V. Given a function ¢: {vy,...,vy} — W, there is a unique
linear transformation ®: V — W such that

D(vj) = @(v;) (1 <j<m).
We can express this with the aid of the commutative diagram

inclusion

(01, vy} ——elusion

x L e

w
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in which the dotted arrow is supposed to indicate a (unique) solution to the problem of filling
in the diagram

inclusion

{vi,...,o} — =V

i
w
with a linear transformation so that composing the functions corresponding to the horizontal

and right hand sides agrees with the functions corresponding to left hand side.

Proor. The definition of @ is

® D N | =D Nie(v). O
=1 j=1

When using this result we will refer to ® as the linear extension of ¢ and often write ¢.

Let V,W be finite dimensional k-vector spaces with bases {vi,..., v} and {wq,...,wy,},
where m = dimy V and n = dimy W. By Proposition 1.1, each function ¢;;: {vi,...,vm} — W
(1<i<m,1<j<n)given by

wij(ve) = dppw; (1 <k <m)
has a unique extension to a linear transformation ¢;;: V — W.

PROPOSITION 1.2. The set of functions p;j: V. — W (1 < i< m, 1 < j < n) forms a
basis for Homy (V,W). Hence

dimy Homy (V, W) = dimy V dimgy W = mn.
A particular and important case of this is the dual space of V,
V* = Hom(V, k).
Notice that dimy V* = dimy V. Given any basis {vi,..., vy} of V, define elements v} € V*
(i=1,...,m) by
v (vk) = di,

where 6;; is the Kronecker §-function for which

1 ifi=y,
0ij = )
0 otherwise.

Then the set of functions {v],..., v}, } forms a basis of V*. There is an associated isomorphism
V' — V* under which

*
’Uj <—>'Uj.

If we set V** = (V*)*, the double dual of V, then there is an isomorphism V* — V** under
which

vi (V)"
Here we use the fact that the v} form a basis for V*. Composing these two isomorphisms we
obtain a third V' — V** given by

v —— (V)"
In fact, this does not depend on the basis of V' used, although the factors do! This is sometimes
called the canonical isomorphism V. — V**,

The set of all endomorphisms of V' is

Endg (V) = Homg (V, V),
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which is a ring (actually a k-algebra, and also non-commutative if dimg V' > 1) with addition
as above, and multiplication given by composition of functions. There is a ring monomorphism

k — Endg(V); t+—— tldy,
which embeds k into Endy (V') as the subring of scalars. We also have
dimy Endy (V) = (dimy V)%,

Let GLy (V') denote the group of all invertible k-linear transformations V- — V| i.e., the
group of units in Endg (V). This is usually called the general linear group of V' or the group of
linear automorphisms of V and denoted GLy (V') or Auty (V).

Now let v ={v1,...,un} and w = {wy,...,w,} be bases for V and W. Then given a linear
transformation ¢: V. — W we may define the matrix of ¢ with respect to the bases v and w
to be the n x m matrix with coefficients in k,

wlely = [aij]v

where
n
p(vj) = agjwy.
k=1
Now suppose we have a second pair of bases for V and W, v/ = {v},...,v],} and w' =
{wh,...,wl}. Then we can write

m n

! . !/ .

v; = § PrjUr, w; = § qsjWs,
r=1 s=1

for some p;j;, ¢i; € k. If we form the m x m and n x n matrices P = [p;;] and @ = [g;;], then we
have the following standard result.

PROPOSITION 1.3. The matrices w[¢|v and w [ply are related by the formule
w[plv = Qw[@]vp_l = Q[aij]P_l-
In particular, if W =V, w =v and w = V', then
v/ [(P]v’ = PV[SD]Vpil = P[aij]Pil'

1.1.2. Quotients and complements. Let W C V be a vector subspace. Then we define
the quotient space V/W to be the set of equivalence classes under the equivalence relation ~ on
V defined by

u~wv ifandonlyif v—ueW.
We denote the class of v by v + W. This set V/W becomes a vector space with operations
(u+W)+@w+W)=(ut+v)+W,
Ao+ W)= v)+W

and zero element 0 + W. There is a linear transformation, usually called the quotient map
q: V. — V/W, defined by
q(v) =v+W.

Then ¢ is surjective, has kernel ker ¢ = W and has the following universal property.
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THEOREM 1.4. Let f: V — U be a linear transformation with W C ker f. Then there is a
unique linear transformation f: V/W — U for which f = f o q. This can be expressed in the
diagram

in which all the sides represent linear transformations.

PrOOF. We define f by
flo+W) = f(v),
which makes sense since if v ~ v, then v/ — v € W, hence
") = f((v" =) +v) = f(v' —v) + f(v) = f(o).

The uniqueness follows from the fact that ¢ is surjective. O

Notice also that
(1.1) dimk V/W = dimkV - dimkW

A linear complement (in V') of a subspace W C V is a subspace W/ C V such that the
restriction ¢, : W' — V/W is a linear isomorphism. The next result sums up properties of
linear complements and we leave the proofs as exercises.

THEOREM 1.5. Let W C V and W' C V be vector subspaces of the k-vector space V' with
dimy V = n. Then the following conditions are equivalent.

(a) W' is a linear complement of W in V.
(b) Let {wr,...,w,} be a basis for W, and {wy41,...,wn} a basis for W'. Then

{wi, ..., wp} ={wi,...,w } U{wryr, ..., wy}

s a basis for V.
(¢c) Every v € V has a unique expression of the form

V=1 + V2

for some elements v € W, vo € W'. In particular, W N W' = {0}.

(d) Every linear transformation h: W' — U has a unique extension to a linear transfor-
mation H: V — U with W C ker H.

(e) W is a linear complement of W' in V.

(f) There is a linear isomorphism J: V = W x W for which im J, = W x {0} and
im J‘W’ = {O} X W/.

(g) There are unique linear transformations p: V. — V and p': V. — V for which

12

p?=pop=p, p"=pop =y,
imp=W, imp =W,
Idy =p+7p.
We often write V' = W @& W’ whenever W' is a linear complement of W. The maps p,p’ of

Theorem 1.5(g) are often called the (linear) projections onto W and W’. This can be extended
to the situation where there are r subspaces Vi,...,V,. C V for which

j=1
and we inductively have that Vi is a linear complement of (Vl P kal) in (Vl + -+ Vk)
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A linear complement for a subspace W C V always exists since we can extend a basis
{wi,...,w,} of W to a basis {wi,...,wr, Wri1,...,w,} for V and then take W’ to be the
subspace spanned by {w;41,...,w,}. Theorem 1.5(b) implies that W' is a linear complement.

1.2. Class functions and the Cayley-Hamilton Theorem

In this section k can be any field. Let A = [a;;] be an n x n matrix over k.

DEFINITION 1.6. The characteristic polynomial of A is the polynomial (in the variable X)
n
chary(X) = det(X I, — [a;5]) = ch(A)Xk € k[X],
k=0

where I, is the n x n identity matrix.

This polynomial is monic and of degree n in X. The coefficients ¢,(A) € k are functions of
the entries a;;. The following is an important result about this polynomial.

THEOREM 1.7 (Cayley-Hamilton Theorem: matrix version). The matriz A satisfies
the polynomial identity

n

chara(A) =) " cp(A)A" = 0.
k=0

ExXAMPLE 1.8. Let

A= [g _01] c R[X].

Then
X 1

char4(X) = det {_1 5

] =X*+1.
By calculation we find that A% + Iy = Oy as claimed.

LEMMA 1.9. Let A = [a;j] and P be an n x n matriz with coefficients in k. Then if P is
invertible,

charpgp-1(X) = char4(X).
Thus each of the coefficients ci(A) (0 < k < n) satisfies
cx(PAP™Y) = ¢ (A).
PrOOF. We have
charp4p-1(X) = det(XI, — PAP™!)
=det(P(XI,)P~t — PAP™Y)
=det(P(X1I, — A)P71)
= det Pdet(X1, — A)det P!
= det P char 4 (X)(det P)~*
= chary(X).
Comparing coeflicients we obtain the result. O

This result shows that as functions of A (and hence of the a;;), the coefficients c;(A) are
tnvariant or class functions in the sense that they are invariant under conjugation,

c.(PAP™Y) = ¢, (A).
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Recall that for an n x n matrix A = [a;;], the trace of A, tr A € k, is defined by

n
tI‘A = Z ajj.
7j=1

ProrosITION 1.10. For any n X n matriz over k we have
cn—1(A)=—trA and c,(A) = (—1)"det A.
PROOF. The coefficient of X"~ in det(XI,, — [a;;]) is

n
— Zaw = —trfa;;] = —tr 4,
r=1

giving the formula for ¢,_1(A). Putting X = 0 in det(X 1, — [a;;]) gives

cn(A) = det([—ai;]) = (—1)" det[a;;] = (—1)" det A. O
Now let ¢: V — V be a linear transformation on a finite dimensional k-vector space with
a basis v = {v1,...,v,}. Consider the matrix of ¢ relative to v,
[Plv = laijl,
where

n
Yuv; = E Gy Up.
r=1

Then the trace of ¢ with respect to the basis v is

try ¢ = trply.

If we change to a second basis w say, there is an invertible n x n matrix P = [p;;] such that

n
Wi = § PriUr,
r=1

and then

Hence,
try @ = tr (P[gp]vP—l) = try .
Thus we see that the quantity
tro =try e

only depends on ¢, not the basis v. We call this the trace of . Similarly, we can define
det p = det A.
More generally, we can consider the polynomial

char,(X) = chary,, (X)

which by Lemma 1.9 is independent of the basis v. Thus all of the coefficients c;(A) are
functions of ¢ and do not depend on the basis used, so we may write c;(¢) in place of ci(A).
In particular, an alternative way to define tr ¢ and det ¢ is as

tro =cp—1(p) and detyp = (—1)"det A.

We also call chary,(X) the characteristic polynomial of ¢. The following is a formulation of the
Cayley-Hamilton Theorem for a linear transformation.
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THEOREM 1.11 (Cayley-Hamilton Theorem: linear transformation version).
If o: V. — V is a k-linear transformation on the finite dimensional k-vector space V', then ¢
satisfies the polynomial identity
char,(p) = 0.
More explicitly, if

n
chary(X) = Z er(p) X7,
r=0
then writing ©° = Idy, we have

Z cr(p)p” = 0.
r=0

There is an important connection between class functions of matrices such as the trace
and determinant and eigenvalues. It can be shown that for a complex square matrix A (or
more generally a matrix over an algebraically closed field k), the distinct eigenvalues are the
distinct roots of the characteristic polynomial char4(X); thus there are at most n distinct
eigenvalues. However, on factoring char4(X) into linear factors we may get repeated linear
factors corresponding to ‘repeated’ or ‘multiple’ roots. If a linear factor (X — A) appears to
degree d say, we say that A\ is an eigenvalue of multiplicity d. If every eigenvalue of A has
multiplicity 1, then A is diagonalisable in the sense that there is an invertible matrix P satisfying

PAP™! =diag(\1, ..., \n),

the diagonal matrix with the n distinct diagonal entries A\ down the leading diagonal. More
generally, let

(1.2) charg(X) = (X — A1) - (X = A\p),
where now we allow some of the A\; to be repeated. Then we can describe tr A and det A in

terms of the eigenvalues \;.

PROPOSITION 1.12. The following identities hold:

trdA = i Aj,
j=1

det A = (—1)”)\1 ce )\n-

PROOF. These can be verified by considering the degree (n — 1) and constant terms in
Equation (1.2) and using Proposition 1.10. O

We can also apply the above discussion to a linear transformation ¢: V' — V', where an
eigenvector for the eigenvalue A € C is a non-zero vector v € V satisfying ¢(v) = Av.

The characteristic polynomial may not be the polynomial of smallest degree satisfied by a
matrix or a linear transformation. By definition, a minimal polynomial of an n x n matrix A or
linear transformation ¢: V' — V is a (non-zero) monic polynomial f(X) of smallest possible
degree for which f(A4) =0 or f(p) = 0.

LEMMA 1.13. For an n x n matriz A or a linear transformation ¢: V. — V', let f(X) be a
minimal polynomial and g(X) be any other polynomial for which g(A) =0 or g(¢) = 0. Then
f(X) | g(X). Hence f(X) is unique.

PROOF. We only give the proof for matrices, the proof for a linear transformation is similar.
Suppose that f(X) 1t g(X). Then we have

9(X) = q(X) f(X) +r(X)
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where degr(X) < deg f(X). Since r(A) = 0 and r(X) has degree less than f(X), we have a
contradiction. Hence f(X) | g(X). In particular, if g(X) has the same degree as f(X), the
minimality of g(X) also gives g(X) | f(X). As these are both monic polynomials, this implies
f(X) = 9(X). m

We write ming (X)) or min,(X) for the minimal polynomial of A or ¢. Note also that

mina (X) | chars(X) and ming(X) | chary(X).

1.3. Separability

LEMMA 1.14. Let V be a finite dimensional vector space over C and let p: V. — V be a
linear transformation. Suppose that

m

0# f(X) =) X" €C[X]

r=0
is a polynomial with no repeated linear factors over C and that o satisfies the relation

m
Z CTSOT =0,
r=0

i.e., for everyv €V,

Z e’ (v) = 0.
r=0

Then V' has a basis v = {v1,...,v,} consisting of eigenvectors of .

PRrROOF. By multiplying by the inverse of the leading coefficient of f(X) we can replace
f(X) by a monic polynomial with the same properties, so we will assume that f(X) is monic,
i.e., ¢y = 1. Factoring over C, we obtain

F(X) = fm(X) = (X = A1)+ (X = Am),
where the \; € C are distinct. Put
frn-1(X) = (X = A1) - (X = A1)
Notice that fi,(X) = fim—1(X)(X — Ap), hence (X — A;,) cannot divide f,,—1(X), since this

would lead to a contradiction to the assumption that f,,(X) has no repeated linear factors.
Using long division of (X — Ay,) into f,—1(X), we see that

fmfl(X) = Qm(X)(X - )\m) + 'm,

where the remainder 7, € C cannot be 0 since if it were then (X — \;,;,) would divide fp,—1(X).
Dividing by r, if necessary, we see that for some non-zero s,, € C,

Smfm—1(X) — gm(X)(X — \p) = 1.
Substituting X = ¢, we have for any v € V,
$m fm-1(9) (V) = gm (@) (¢ — A 1dv) (v) = v.
Notice that we have
(o = A Idy) (smfim-1(90)(v)) = smfm(@)(v) =0
and

Jm—1(¢) (gm(2)( — A 1dv) (v)) = gm (@) frm (@) (v) = 0.

Thus we can decompose v into a sum v = vy, + v,,,, where

(¢ = AmIdy)(vm) =0 and  fr—1(0)(vy,) = 0.
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Let
Vo = {0 €V : (6~ AmTdy)(0) = 0},
Vin ={veV: fm1(p)(v) = 0}.
Thus we have shown that V =V, + V.. If v € V, NV, | then from above we would have
v = 8mfm-1(#)(v) = g () (¢ = Am Tdy)(v) = 0.

So V,, NV = {0}, hence V =V, ® V). We can now consider V! in place of V, noticing that
forve V!, ¢o(v) € V), since

fm-1(0)(e(v)) = ¢ (fm-1(p)(v)) = 0.
Continuing in this fashion, we eventually see that
V=Vi® -V,

where for v € Vj,
(o = Aw)(v) = 0.
If we choose a basis v(y) of Vi, then the (disjoint) union

V=v) U Uvey
is a basis for V, consisting of eigenvectors of . O
The condition on ¢ in this result is sometimes referred to as the separability or semisimplicity
of . We will make use of this when discussing characters of representations.
1.4. Basic notions of multilinear algebra

In this section we will describe the tensor product of r vector spaces. We will most often
consider the case where r = 2, but give the general case for completeness. Multilinear algebra
is important in differential geometry, relativity, electromagnetism, fluid mechanics and indeed
much of advanced applied mathematics where tensors play a role.

Let V4,..., V. and W be k-vector spaces. A function

F:Vix- - xV,—W

is k-multilinear if it satisfies

(ML-1)
F(up, .o U1, 0k + Uy U1y -5 0r) = F(U1, 00, Uy oo, Up) + F(U1, oo U1, Uy Ukt 1y - - -5 U ),
(ML-2)

F(viy..o U1, t0%, Vg1, -« -y Up) = tF(V1, ooy Uk—1, Vky U1y - « - 5 Ur)

for vj, U; € V and t € k. It is symmetric if for any permutation o € S, (the permutation group
on r objects),

(ML-S) F(Ug(1)s -+ s Vo(k)s - - Vo)) = F (01,005 Oy o5 0p),
and is alternating or skew-symmetric if

(ML-A) F(Vg(1)s -+ s Vo(k)s - -+ Vo(r)) = SigN(0) F(V1, -+ ., Vgy - -, Up),

where sign(o) € {£1} is the sign of o.
The tensor product of Vi,...,V, is a k-vector space V1@ Vo ®- - -® V. together with a function
T:Vi XXV, — V1 ®Vo®- - ® V, satisfying the following universal property.

UP-TP: For any k-vector space W and multilinear map F: Vi x --- x V., — W, there is a
unique linear transformation F': Vi ® --- @ V,, — W for which F' o1 = F.
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In diagram form this becomes

le...x‘/; V1®®‘/7”

\ A
A

w

where the dotted arrow represents a unique linear transformation making the diagram commute.

When Vi =Vo=--- =V, =V, wecall V®---®V the rth tensor power and write T" V.
Our next result provides an explicit description of a tensor product.

PROPOSITION 1.15. If the finite dimensional k-vector space Vi, (1 < k < r) has a basis
Vi ={Vk 1, Uk, }
where dimy Vi, = ng, then V1 ® --- ® V. has a basis consisting of the vectors
Vi @ @ Ui, = T(Viigs- o s Vriy)s
where 1 < i, < n. Hence we have
dimy Vi ®--- @V =ng---n,.
More generally, for any sequence wy € Vi,...w, € V., we set
W Q- @wp =T(Wi, ..., W),

These satisfy the multilinearity formulae

(MLF-1) w; @ -+ @ wp—1 @ (wg + W) @ Wi @ -+ @ wy =
W R QW Q- Wy + W Q- QW ® Wy, @ Whg1 ® -+ - @ Wy,

(MLF-2)
W R QW1 RtWw @ Wi - Qwyp = Hw @+ @ Wi @ Wi @ Wiy ® « -+ @ Wy).
We will see later that the tensor power T" V' can be decomposed as a direct sum T"V =
Sym”" V @ Alt" V consisting of the symmetric and antisymmetric or alternating tensors Sym’ V/
and Alt" V.
We end with some useful results.

PropOSITION 1.16. Let Vi,...,V, be finite dimensional k-vector spaces. Then there is a
linear isomorphism

V1*®...®Vr* (a5 (V1®®Vr)*
In particular,
T"(V*) = (T"V)*.
PROOF. Use the universal property to construct a linear transformation with suitable prop-

erties. 0

PropPOSITION 1.17. Let V, W be finite dimensional k-vector spaces. Then there is a k-linear
isomorphism
W @ V* = Homy (V, W)
under which for a« € V* and w e W,

W R o — wa

where by definition, wa: V. — W is the function determined by wa(v) = a(v)w for v € V.
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PRrROOF. The function W x V* — Homy(V, W) given by (w,«) +— wa is bilinear, and
hence factors uniquely through a linear transformation W ® V* — Homy (V, W). But for bases
v ={vi,..., v} and w = {wq,...,wp} of V and W, then the vectors w; ® v; form a basis of
W @ V*. Under the above linear mapping, w; ® v; gets sent to the function w;v; which maps
vg to w; if k =i and 0 otherwise. Using Propositions 1.2 and 1.15, it is now straightforward to
verify that these functions are linearly independent and span Homy (V, W). O

ProrosiTION 1.18. Let Vi,..., V., W1,..., W, be finite dimensional k-vector spaces, and
foreach 1 <k <r, let pg: Vi, — Wi be a linear transformation. Then there is a unique linear
transformation

1R QP V1R QV, — W1 Q---@W,
giwen on each tensor vi @ - -- @ v, by the formula
P1® R (1® - ®vr) = p1(v1) @+ @ p1(vy).

PRrOOF. This follows from the universal property UP-TP. O

Exercises on Chapter 1

1-1. Consider the 2-dimensional C-vector space V = C2. Viewing V as a 4-dimensional R-vector
space, show that

W ={(z,w) €C*: 2 = —w}

is an R-vector subspace of V. Is it a C-vector subspace?
Show that the function §: W — C given by

0(z,w) =Rez+ Imw

is an R-linear transformation. Choose R-bases for W and C and determine the matrix of 6
with respect to these. Use these bases to extend 6 to an R-linear transformation ©: V — C
agreeing with @ on W. Is there an extension which is C-linear?

1-2. Let V = C* as a C-vector space. Suppose that o: V — V is the function defined by
U(Zla 22, 23, 24) == (,23, 24421, 22)-

Show that o is a C-linear transformation. Choose a basis for V' and determine the matrix of o
relative to it. Hence determine the characteristic and minimal polynomials of o and show that
there is basis for V' consisting of eigenvectors of o.

1-3. For the matrix

18 5 15
A= | -6 5 -9
-2 -1 5

show that the characteristic polynomial is chara(X) = (X — 12)(X — 8)? and find a basis for
C? consisting of eigenvectors of A. Determine the minimal polynomial of A.

1-4. For each of the k-vector spaces V and subspaces W, find a linear complement W',
(i) k = R, V = R?’, W = {(.%‘1,.%’2,.%3) T2 — 2.%‘3 = 0};
(i) k=R, V=RY W = {(21, 72,23, 24) : 22 — 203 = 0 = 21 + 24 };

(iii) k=C, V =C3 W = {(21, 22, 23, 24) : 22 —iz3 = 0 = 21 + 4izy}.

) k=R, V =(R3* W ={a:ale) =0}
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1-5. Let V be a 2-dimensional C-vector space with basis {v1,v2}. Describe a basis for the tensor
square T? V' = V®V and state the universal property for the natural function 7: VxV — T2 V.
Let F': V x V — C be a non-constant C-bilinear function for which

F(v,u) = —F(u,v) (u,veV)

(Such a function is called alternating or odd.) Show that F' factors through a linear transfor-
mation F': T2V — C and find ker F'.

If G: V xV — C is a second such function, show that there is a ¢t € C for which G(u,v) =
tF(u,v) for all u,v e V.

1-6. Let V be a finite dimensional k-vector space where chark = 0 (e.g., k = Q,R,C) and
dimy V = n where n is even.

Let F: V x V — k be an alternating k-bilinear function which is non-degenerate in the
sense that for each v € V| there is a w € V such that F(v,w) # 0.

Show that there is a basis {v1,...,v,} for V for which

F(var—1,v9) = —F(v2r,v90-1) =1, (r=1,...,n/2),
F(vi,v;) =0, whenever |i — j| # 1.

[Hint: Try using induction on m = n/2, starting with m = 1.]



CHAPTER 2

Representations of finite groups

2.1. Linear representations

In discussing representations, we will be mainly interested in the situations where k = R or
k = C. However, other cases are important and unless we specifically state otherwise we will
usually assume that k is an arbitrary field of characteristic 0. For fields of finite characteristic
dividing the order of the group, Representation Theory becomes more subtle and the resulting
theory is called Modular Representation Theory. Another important property of the field k
required in many situations is that it is algebraically closed in the sense that every polynomial
over k has a root in k; this is true for C but not for R, however, the latter case is important in
many applications of the theory. Throughout this section, G will denote a finite group.

A homomorphism of groups p: G — GLg (V') defines a k-linear action of G on V' by

g-v=pgv=p(g)(v),

which we call a k-representation or k-linear representation of G in (or on) V. Sometimes V'
together with p is called a G-module, although we will not use that terminology. The case where
p(g) = Idy is called the trivial representation in V. Notice that we have the following identities:

(Rep-1) (hg) - v = prgv =ppopv="h-(g-v) (h,geG, veV),
(Rep-2) g+ (v1+v2) = pg(v1 +v2) = pgv1 + pgra =g-vi+g-v2 (9€G, v; €V),
(Rep-3) g- () = pg(tv) =tpg(v) =t(g-v) (g€ G, veV, tEKk).

A vector subspace W of V' which is closed under the action of elements of G is called a G-
submodule or G-subspace; we sometimes say that W is stable under the action of G. It is usual
to view I as being a representation in its own right, using the ‘restriction’ p|,, : G — GLy(W)
defined by

Pl (9)(w) = pg(w).
The pair consisting of W and p,,, is called a subrepresentation of the original representation.

Given a basis v = {vy,...,v,} for V with dimy V' = n, for each g € G we have the associated
matrix of p(g) relative to v, [r;;(g)] which is defined by

n

(Rep-Mat) PgV; = Zrkj (9)vg.
k=1

EXAMPLE 2.1. Let p: G — GLg (V) where dimy V' = 1. Then given any non-zero element
v € V (which forms a basis for V') we have for each g € G a A\, € k satisfying g - v = A\jv. By
Equation (Rep-1), for g, h € G we have

AhgV = ApAgu,
and hence
Ahg = AnAg.
From this it is easy to see that Ay # 0. Thus there is a homomorphism A: G — k* given by

Alg) = Ag.
13
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Although this appears to depend on the choice of v, in fact it is independent of it (we leave this
as an exercise). As G is finite, every element g € G has a finite order |g|, so we also have

ol _
Al =1,

which we also leave as an exercise. This says that )\, is a |g|-th root of unity. Hence, given a
1-dimensional representation of a group, we can regard it as equivalent to such a homomorphism
G — k*.

Here are two illustrations of Example 2.1.

ExXAMPLE 2.2. Take k = R. Then the only roots of unity in R are 1, hence we can assume
that for a 1-dimensional representation over R, A: G — {1,—1}, where the codomain is a
group under multiplication. The sign function sign: S,, — {1, —1} provides an interesting and
important example of this.

EXAMPLE 2.3. Now take k = C. Then for each n € N we have n distinct n-th roots of unity
in C*. We will denote the set of all n-th roots of unity by u,, and the set of all roots of unity

by
Moo = U K,
neN

where we use the inclusions g, C i, whenever m | n. These are abelian groups under multi-
plication.

Given a 1-dimensional representation over C, the function A can be viewed as a homomor-
phism A: G — peo, or even A: G — pg| by Lagrange’s Theorem.

For example, if G = C' is cyclic of order N say, then we must have for any 1-dimensional
representation of C' that A: C' — un. Note that there are exactly N of such homomorphisms.

ExaMPLE 2.4. Let GG be a simple group which is not abelian. Then given a 1-dimensional
representation p: G — GLg (V') of G, the associated homomorphism A: G — | has abelian
image, hence ker A has to be bigger than {es}. Since G has no proper normal subgroups, we
must have ker A = G. Hence, p(g) = Idy.

Indeed, for any representation p: G — GLg (V') we have ker p = G or ker p = {eg}. Hence,
either the representation is trivial or p is an injective homomorphism, which therefore embeds
G into GLg (V). This severely restricts the smallest dimension of non-trivial representations of
non-abelian simple groups.

EXAMPLE 2.5. Let G = {e,7} = Z/2 and let V be any representation over any field not of
characteristic 2. Then there are k-vector subspaces V4, V_ of V' for which V"=V, & V_ and

the action of G is given by
{ v ifveVy,
Ty =

—v ifveV_.

PRrROOF. Define linear transformations e,e_: V. — V by

1 1
6+(U):§(’U+T~U), 5,(1)):5(1)77“1)).
It is easily verified that
er(T-v)=e4(v), e_(1-v)=—e_(v).

We take V; =ime; and V_ = ime_ and the direct sum decomposition follows from the identity

v=ei(v) +e-(0) .
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The decomposition in this example corresponds to the two distinct irreducible representa-
tions of Z/2. Later we will see (at least over the complex numbers C) that there is always such a
decomposition of a representation of a finite group G with factors corresponding to the distinct
irreducible representations of G.

EXAMPLE 2.6. Let Do, be the dihedral group of order 2n described in Section A.7.2. This
group is generated by elements « of order n and 3 of order 2, subject to the relation

Baf =a "t

We can realise Do, as the symmetry group of the regular n-gon centred at the origin and with
vertices on the unit circle (we take the first vertex to be (1,0)). It is easily checked that relative
the standard basis {e;,es} of R?, we get

cos2rm/n  —sin2rm/n
—sin2rm/n  —cos2rm/n

. [cos2rm/n —sin2r7r/n} Ba’ = [

sin2rm/n cos2rmw/n

forr=0,...,(n—1).

Thus we have a 2-dimensional representation p of D, over R, where the matrices of p*(a")
and p®(Ba™) are given by the above. We can also view R? as a subset of C? and interpret these
matrices as having coefficients in C. Thus we obtain a 2-dimensional complex representation
p® of Dy, with the above matrices relative to the C-basis {e1,e2}.

2.2. G-homomorphisms and irreducible representations

Suppose that we have two representations p: G — GLi(V) and 0: G — GLg(W). Then
a linear transformation f: V — W is called G-equivariant, G-linear or a G-homomorphism
with respect to p and o, if for each g € G the diagram

v L w

al [

v Lo w

commutes, i.e., o040 f = f o p, or equivalently, o450 fop,1 = f. A G-homomorphism which
is a linear isomorphism is called a G-isomorphism or G-equivalence and we say that the repre-
sentations are G-isomorphic or G-equivalent.

We define an action of G on Homy(V, W), the vector space of k-linear transformations
V — W, by

(9 f)(v) = ogf(pg-1v) (f € Homy(V,W)).

This is another G-representation. The G-invariant subspace Homg(V, W) = Homy (V, W)< is
then equal to the set of all G-homomorphisms.

If the only G-subspaces of V are {0} and V, p is called irreducible or simple.

Given a subrepresentation W C V| the quotient vector space V/W also admits a linear
action of G, py: G — GLi(V/W), the quotient representation, where

pw(g)(v+ W) =p(g)(v) + W,

which is well defined since whenever v/ — v € W,

p(g) (W) +W = p(g)(v+ (v —v)) + W = (p(g)(v) + p(g)(v" —v))) + W = p(g)(v) + W.

ProposiTIiON 2.7. If f: V — W is a G-homomorphism, then
(a) ker f is a G-subspace of V;
(b) im f is a G-subspace of W.
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PROOF. (a) Let v € ker f. Then for g € G,
f(pgv) = 0gf(v) =0,
so pgv € ker f. Hence ker f is a G-subspace of V'
(b) Let w € im f with w = f(u) for some u € V. Now
ogw = ogf(u) = f(pgu) € im f,
hence im f is a G-subspace of W. O

THEOREM 2.8 (Schur’s Lemma). Let p: G — GL¢ (V) and 0: G — GL¢(W) be irred-
uctble representations of G over the field C, and let f: V — W be a G-linear map.

(a) If f is not the zero map, then f is an isomorphism.
(b) If V=W and p = o, then f has the form
flwy=x (vevV)
form some A € C.

REMARK 2.9. Part (a) is true for any field k in place of C.

PROOF. (a) Proposition 2.7 implies that ker f C V and im f C W are G-subspaces. By the
irreducibility of V, either ker f = V' (in which case f is the zero map) or ker f = {0} in which
case f is injective. Similarly, irreducibility of W implies that im f = {0} (in which case f is the
zero map) or im f = W in which case f is surjective. Thus if f is not the zero map it must be
an isomorphism.

(b) Let A € C be an eigenvalue of f, with eigenvector vy # 0. Let fy: V — V be the linear
transformation for which

A(©) = f@) A (ve).
For g € G,
pgfa(v) = pgf(v) — pgAv
= f(pgv) — Apgv,
= fa(pgv),
showing that fy is G-linear. Since f)(vg) = 0, Proposition 2.7 shows that ker f\ = V. As
dimg V' = dimg ker f) + dimg im fy,
we see that im f) = {0} and so
H)=0 (veV). O
A linear transformation f: V — V is sometimes called a homothety if it has the form
floy=  (vevV).

In this proof, it is essential that we take k = C rather than k = R for example, since we
need the fact that every polynomial over C has a root to guarantee that linear transformations
V — V always have eigenvalues. This theorem can fail to hold for representations over R as
the next example shows.

ExAMPLE 2.10. Let k = R and V = C considered as a 2-dimensional R-vector space. Let
G=ps={1,-1,1,—i}
be the group of all 4th roots of unity with p: puy — GLg (V) given by

PaZ = QZ.
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Then this defines a 2-dimensional representation of G over R. If we use the basis {u = 1,v =i},
then

P =1, pU= —u.
From this we see that any G-subspace of V' containing a non-zero element w = au + bv also

contains —bu + av, and hence it must be all of V' (exercise). So V is irreducible.
But the linear transformation ¢: V. — V given by

plau 4+ bv) = —bu + av = p;(au + bv)
is G-linear, but not the same as multiplication by a real number (this is left as an exercise).

THEOREM 2.11 (Maschke’s Theorem). Let V be a k-vector space and p: G — GLg(V) a
k-representation. Let W C V be a G-subspace of V. Then there is a projection onto W which is
G-equivariant. Equivalently, there is a linear complement W' of W which is also a G-subspace.

PROOF. Let p: V. — V be a projection onto W. Define a linear transformation pg: V —
V by

po®) = 157 3 py om0 (0).
geqG
Then for v € V,
pgopopy(v)eW
since imp = W and W is a G-subspace; hence po(v) € W. We also have

1 B
polpgv) = €] > pnplpy pgv)
heG

1 B
=1 > pgpg-1np(p, i)
heG

1 -1
= pg <|G| > pg—lhp(pg_lhv)>

heG
1
=\ 1@ > prp(pp-1v)
heG
= pgp()(v),

which shows that pg is G-equivariant. If w € W,

1
Po(w) = > pap(pg-1w)
geG

1
EP L
geG

1

=G > w
geG

(G w)
= — w) = w.

G|
Hence pog,,, = Idw, showing that pg has image W.

Now consider W' = kerpg, which is a G-subspace by part (a) of Proposition 2.7. This
is a linear complement for W since given the quotient map ¢: V. — V/W, if v € W’ then
q(v) =0+ W implies v € W N W' and hence 0 = py(v) = v. O
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THEOREM 2.12. Let p: G — GLg(V') be a linear representation of a finite group with V
non-trivial. Then there are G-spaces Uy, ..., U, CV, each of which is a non-trivial irreducible
subrepresentation and

V=U& --aU,.

PROOF. We proceed by Induction on n = dimy V. If n = 1, the result is true with Uy = V.
So assume that the result holds whenever dimy V' < n. Now either V is irreducible or
there is a proper G-subspace U; C V. By Theorem 2.11, there is a G-complement U] of
Uy in V with dimy U < n. By the Inductive Hypothesis there are irreducible G-subspaces
Us,...,U, CU] CV for which
U=Us&--aU,,
and so we find
V=UeoUs®- - oU. U

We will see later that given any two such collections of non-trivial irreducible subrepresent-
ations Uy, ..., U, and W1y, ..., Wy, we have s = r and for each £, the number of W; G-isomorphic
to Uy is equal to the number of U; G-isomorphic to Uj. The proof of this will use characters,
which give further information such as the multiplicity of each irreducible which occurs as a sum-
mand in V. The irreducible representations U are called the irreducible factors or summands
of the representation V.

An important example of a G-subspace of any representation p on V is the G-invariant
subspace

C={veV:p=uvVgeG}

We can construct a projection map V. — V& which is G-linear, provided that the characteristic
of k does not divide |G|. In practice, we will be mainly interested in the case where k = C, so
in this section from now on, we will assume that k has characteristic 0.

PROPOSITION 2.13. Let e: V. — V be the k-linear transformation defined by
1G] Z Pg?-
geG
Then

(a) Forge G andv €V, pge(v) = e(v);
(b) € is G-linear;
(c) forve VY e(v) =v and so ime = VC.

PRrROOF. (a) Let g € G and v € V. Then

1
pge(v) (|G\ > owv ) =l > popnv = Gl Zpghv thv (v).

heG heG heG hGG
(b) Similarly, for g € G and v € V,
e(pgv) > on(pgv) S pngv = = 3 v = (0
’G| heo |G’ e

By (a), this agrees with pse(v). Hence, € is G-linear.

(¢) For v € V&,
(v) Pq¥ Glv = .
~al z;,, "l AL G

Notice that this also shows that ime = V. O
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2.3. New representations from old

Let G be a finite group and k a field. In this section we will see how new representations
can be manufactured from existing ones. As well as allowing interesting new examples to be
constructed, this sometimes gives ways of understanding representations in terms of familiar
ones. This will be important when we have learnt how to decompose representations in terms
of irreducibles and indeed is sometimes used to construct the latter.

Let Vi,...,V, be k-vector spaces admitting representations pq, ..., p, of G. Then for each
g € G and each j, we have the corresponding linear transformation Pig: V; — V;. By Propo-
sition 1.18 there is a unique linear transformation

Plg®"'®P7~g3 V1®...®{/;_>‘/i®...®w_
It is easy to verify that this gives a representation of G on the tensor product V1 ®- - -®@V,., called
the tensor product of the original representations. By Proposition 1.18 we have the formula

(2.1) Plg @ @ prg(V1 @ ®Up) = p1ryv1 @ -+ @ pryUy

forveV; (j=1,...,m).

Let V,W be k-vector spaces supporting representations p: G — GLg(V) and 0: G —
GLg(W). Recall that Homy(V, W) is the set of all linear transformations V. — W which
is a k-vector space whose addition and multiplication are given by the following formulse for
¢,0 € Homy(V, W) and t € k:

(e +0)(u) = ¢(u) + 0(w),
() (u) = t(p(u)) = ¢(tu).
There is an action of G on Homy(V, W) defined by
(T90) (1) = agp(pg-11).

This turns out to be a linear representation of G' on Homy (V, W).
As a particular example of this, taking W = k with the trivial action of G (i.e., o4 = Idy),
we obtain an action of G on the dual of V,

V* = Homy (V, k).
This action determines the contragredient representation p*; explicitly,
Pyp = PO py-1.

PROPOSITION 2.14. Let p: G — GLg(V') be a representation, and v = {vi,...,v,} be a
basis of V. Suppose that relative to v,

[pglv = [rij(9)] (9 € G).

Then relative to the dual basis v* = {v],...,v}}, we have

[oglvs = [rji(g™ ")) (9 € G),
or equivalently,
o5l = [pg—1]"
Proor. If we write
[Pglv= = [ti(9)],
then by definition,

n
p; : = Ztrs(g)v;k‘
r=1
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Now for eachi=1,...,n,

pg J Z t”

which gives

and hence

fv ZT’“ vi :rji(gfl). O

Another perspective on the above is provided by the next result, whose proof is left as an
exercise.

PROPOSITION 2.15. The k-linear isomorphism
Homy (V, W) =W % %
is a G-isomorphism where the right hand side carries the tensor product representation o & p*.
Using these ideas together with Proposition 2.13 we obtain the following useful result

PROPOSITION 2.16. For k of characteristic 0, the G-homomorphism
e: Homy(V, W) — Homy(V, W)

of Proposition 2.13 has image equal to the set of G-homomorphisms V. — W, Homy (V, W)¢
which is also G-isomorphic to (W @y V*)&

Now let p: G — GLg(V') be a representation of G and let H < G. We can restrict p to
H and obtain a representation p|, : H — GLy (V') of H, usually denoted p 1% or Resg p; the
H-module V is also denoted V | or Res% V.

Similarly, if G < K, then we can form the induced representation p Tg: K — GLg(V Tg)
as follows. Take Kp to be the G-set consisting of the underlying set of K with the G-action

g'az:xg_l.

Define
V 16=Ind§ V = Map(Kg, V)" = {f: K — V: f(z) = pyf(zg) Vo € K}.

Then K acts linearly on V TG by

(k- f)(@) = f(kx),
and so we obtain a linear representation of K. The induced representation is often denoted
p Tg or Indg p. The dimension of V Tg is dimy V' Tg: |K/G|dimy V. Later we will meet
Reciprocity Laws relating these induction and restriction operations.

2.4. Permutation representations

Let G be a finite group and X a finite G-set, i.e., a finite set X equipped with an action
of G on X, written gz. A finite dimensional G-representation p: G — GL¢ (V) over k is a
permutation representation on X if there is an injective G-map j: X — Vandimj = j(X) CV
is a k-basis for V. Notice that a permutation representation really depends on the injection
j. We frequently have situations where X C V and j is the inclusion of the subset X. The
condition that j be a G-map amounts to the requirement that

pg(i(x)) = jlgx) (9 € G,z e X).
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DEFINITION 2.17. A homomorphism from a permutation representation j;: X7 — Vj to a
second jo: X9 — V5 is a G-linear transformation ®: V3 — V5 such that

®(ji(z)) € imjs  (z € X).

A G-homomorphism of permutation representations which is a G-isomorphism is called a G-
isomorphism of permutation representations.

Notice that by the injectivity of jo, this implies the existence of a unique G-map ¢: X; —

X5 for which
Ja(e(x)) = ®(j1(z) (z € X1).

Equivalently, we could specify the G-map ¢: X7 — X5 and then ®: V; — V5 would be the
unique linear extension of ¢ restricted to im js (see Proposition 1.1). In the case where ® is a
G-isomorphism, it is easily verified that ¢: X; — X5 is a G-equivalence.

To show that such permutations representations exist in abundance, we proceed as follows.
Let X be a finite set equipped with a G-action. Let k[X] = Map(X, k), the set of all functions

X — k. This is a finite dimensional k-vector space with addition and scalar multiplication
defined by

(f1+ fo)(@) = fil@) + fa(z),  (tf) (@) =t(f(x)),
for fi, fo, f € Map(X,k), t € k and = € X. There is an action of G on Map(X, k) given by
(g- @)= flg~ o).
If Y is a second finite G-set, and ¢: X — Y a G-map, then we define the induced function
s k[X] — Kk[Y] by
(ey)= > f@)= ) f)
z€p~Hy} e(z)=y
THEOREM 2.18. Let G be a finite group.

(a) For a finite G-set X, k[X] is a finite dimensional permutation representation of di-
mension dimy k[X] = | X]|.

(b) For a G-map ¢: X — Y, the induced function ¢.: k[X] — Kk[Y] is a G-linear
transformation.

PrOOF.
a) For each x € X we have a function d,: X — k given by

1 ify=ux,
@(y)z{ Y

0 otherwise.
The map j: X — k[X] given by
j(z) =6
is easily seen to be an injection. It is also a G-map, since
bga(y) =1 = 536(9_13/) =1,
and hence
J(92)(y) = 8ga(y) = du(9™'y) = (9 02)(y).
Given a function f: X — k, consider

F= 3 f(@)s, € k[X].

zeX
Then for y € X,
Fy) = f@)b:(y) = fly) — f(y) =0,

zeX
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hence f — 3 x f(2)d; is the constant function taking the value 0 on X. So the functions J,
(z € X) span k[X]. They are also linearly independent, since if the 0 valued constant function

Z ty0

rzeX

is expressed in the form

for some t;, € k, then for each y € X,
0= tub:(y) =1y,
zeX

hence all the coefficients t, must be 0.
b) The k-linearity of ¢, is easily checked. To show it is a G-map, for g € G,

(-0 W) = (e ) g™ "w)

= ). f@

zep~Hg 1y}

= > flg ),

z€p~1{y}

since

e Hy Ty} ={r € X : go(x) = y}
={r e X :p(gz) =y}
={glz:xe X, zco{y}}.
Since by definition
(9- @) = flg~ ),
we have

(g-pxf)=pulg- f) O

Given a permutation representation k[X], we will often use the injection j to identify X
with a subset of k[X]. If ¢: X — Y is a G-map, notice that

0e(D b)) = > teba)-
zeX zeX

We will sometimes write x instead of 0., and a typical element of k[X] as ) t,x, where
each t, € k, rather than er y tz0z. Another convenient notational device is to list the elements
of X as x1,x9,...,x, and then identify n = {1,2,... ,n} with X via the correspondence k «——
x. Then we can identify k[n] = k™ with k[X] using the correspondence

n
(tl,tg, cee ,tn) — Zthk.
k=1

2.5. Properties of permutation representations

Let X be a finite G-set. The result shows how to reduce an arbitrary permutation repre-
sentation to a direct sum of those induced from transitive G-sets.

PROPOSITION 2.19. Let X = X [[ X2 where X1, Xo C X are closed under the action of G.
Then there is a G-isomorphism

k[X] 2 k[X;] @ k[X2].
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PROOF. Let j1: X1 — X and jo: Xo — X be the inclusion maps, which are G-maps. By
Theorem 2.18(b), there are G-linear transformations ji,: k[X;] — k[X] and jo,: k[X2] —
k[X]. For

f=> t.x €k[X],
zeX
we have the ‘restrictions’
fi= Z tyx, fo= Z L.
zeX) r€Xo
We define our linear map k[X] = k[X;] @ k[X2] by
fr—(f1. f2)-

It is easily seen that this is a linear transformation, and moreover has an inverse given by
(h1, ha) — ji.ha + ja,ho.
Finally, this is a G-map since the latter is the sum of two G-maps, so its inverse is a G-map. 0O

Let X7 and Xs be G-sets. Then X = X; x X5 can be made into a G-set with action given
by
g- (961,562) = (9561791‘2)-
PROPOSITION 2.20. Let X7 and Xo be G-sets. Then there is a G-isomorphism
k[Xl] X k[XQ] = k[Xl X X2]

PROOF. The function F': k[X;] x k[X3] — k[X; x X3] defined by
F( Z Sx T, Z tyy> = Z Z Sacty<m7y)
reX yeXo reX1 yeXo

is k-bilinear. Hence by the universal property of the tensor product (Section 1.4, UP-TP), there
is a unique linear transformation F’: k[X;] ® k[X3] — k[X; x X3] for which

Fllzey)=(z,y) (z€X1, y€Xa).
This is easily seen to to be a G-linear isomorphism. O

DEFINITION 2.21. Let G be a finite group. The regular representation over k is the G-
representation k[G]. This has dimension dimy k[G] = |G].

PROPOSITION 2.22. The regqular representation of a finite group G over a field k is a ring
(in fact a k-algebra). Moreover, this ring is commutative if and only if G is abelian.

PROOF. Let a = deG agg and b = deG byg where agy,b, € G. Then we define the product

of a and b by
ab = Z (Z ahbh1g> g.

geG \hedG
Note that for g, h € G in k[G] we have

(1g)(1h) = gh.

For commutativity, each such product (1¢)(1h) must agree with (1h)(1g), which happens if and
only if G is abelian. The rest of the details are left as an exercise. O

The ring k[G] is called the group algebra or group ring of G over k. The next result is
left as an exercise for those who know about modules. It provides a link between the study
of modules over k[G] and G-representations, and so the group ring construction provides an
important source of non-commutative rings and their modules.
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PROPOSITION 2.23. Let V be a k wvector space. Then if V carries a G-representation, it
admits the structure of a k[G] module defined by

(Z agg)v = Z agguv.
geG geG

Conversely, if V is a k[G]-module, then it admits a G-representation with action defined by
g-v=(lg)v.
2.6. Calculating in permutation representations

In this section, we determine how the permutation representation k[X] looks in terms of the
basis consisting of elements x (z € X). We know that g € G acts by sending = to gz. Hence, if
we label the rows and columns of a matrix by the elements of X, the | X| x |X| matrix [g] of ¢
with respect to this basis has xy entry

1 if x = gy,
2.2 Y S
22) 9oy 9 {O otherwise,

where 0,5 denotes the Kronecker § function which is 0 except for when a = b and it then takes
the value 1. Thus there is exactly one 1 in each row and column, and 0’s everywhere else. The
following is an important example.

Let X =n=1{1,2,...,n} and G = S, the symmetric group of degree n, acting on n in the
usual way. We may take as a basis for k[n], the functions d; (1 < j < n) given by

1 ifk=j,
d;(k) = 1 ’
0 otherwise.
Relative to this basis, the action of o € S, is given by the n x n matrix [o] whose ij-th entry is
1 ifi = o(j),
2.3 oli; =
(2:3) i {() otherwise.

Taking n = 3, we get

01 0 0 0 1 010
(132))=10 o 1|, [@3)]=|0o 1 o], [13213))=[12)]=[1 0 0
1 0 0 1 00 0 0 1

As expected, we also have

00 1 01 0
[(132)][(13)] = 01 0/=1[10 of=[132)13)).
100 00 1

An important fact about permutation representations is the following, which makes their char-
acters easy to calculate.

PROPOSITION 2.24. Let X be a finite G-set, and k[X] the associated permutation represen-
tation. Let g € G and py: k[X] — k[X] be the linear transformation induced by g. Then

trpg = | X9 = [{z € X : gx = x}| = number of elements of X fixed by g.

Proor. Take the elements of X to be a basis for k[X]. Then tr p, is the sum of the diagonal
terms in the matrix [p,] relative to this basis. Now making use of Equation (2.2) we see that

tr p, = number of non-zero diagonal terms in [pg]

= number of elements of X fixed by g.
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Our next result shows that permutation representations are self-dual.

PROPOSITION 2.25. Let X be a finite G-set, and k[X] the associated permutation represen-
tation. Then there is a G-isomorphism k[X] = k[X]*.

PRrROOF. Take as a basis of k[X] the elements x € X. Then a basis for the dual space k[ X]*
consists of the elements z*. By definition of the action of G on k[X]* = Homy (k[X], k), we have

1:c) (g €@G, yeX).

(g-2")(y) =2"(g~
A familiar calculation shows that g - * = (gx)*, and so this basis is also permuted by G. Now
define a function ¢: k[X] — Kk[X]* by

go(z a;xT) = Z azT*.

zeX zeX
This is a k-linear isomorphism also satisfying

@ (g > aw) = (Z ax(Qﬂﬂ)) =Y algr) =g (Z axa:> .

zeX zeX zeX zeX
Hence ¢ is a G-isomorphism. O
2.7. Generalized permutation representations

It is useful to generalize the notion of permutation representation somewhat. Let V be a
finite dimensional k-vector space with a representation of G, p: G — GLy(V'); we will usually
write gv = pgv. We can consider the set of all functions X — V', Map(X, V'), and this is also
a finite dimensional k-vector space with addition and scalar multiplication defined by

(1 + f2)(@) = fil) + fa(z),  (tf)(x) =t(f()),
for fi1, fo, f € Map(X,V), t € k and x € X. There is a representation of G on Map(X, V') given
by
(9- f)(x) = gf (g ).

We call this a generalized permutation representation of G.

PROPOSITION 2.26. Let Map(X, V') be a permutation representation of G, where V' has basis
v ={v1,...,vn}. Then the functions 6,;: X —V (x € X, 1 < j < n) given by

v; ify=ux,
5:v,j(y) - { ’

0 otherwise,
fory € X, form a basis for Map(X, V). Hence,
dimy Map(X, V) = | X|dimy V.
ProoOF. Let f: X — V. Then for any y € X,

) =>_ fiy)v,
=1

where f;j: X — k is a function. It suffices now to show that any function h: X — k has a

h = thax

rzeX

unique expression as

where h, € k and §,: X — k is given by

1 ify=ux,
6;,:(1/)—{

0 otherwise.
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But for y € X,
h(y) =D habuly) < h(y) =hy.
reX

Hence h = Y .y h(x)d; is the unique expansion of this form. Combining this with the above

we have
FW) =>_fiwo;=>_ > fi@)d:(y)v;,
j=1 j=lzeX
and so
f=3> fi@),
j=lzeX
is the unique such expression, since d.;(y) = d(y)v;. O

PROPOSITION 2.27. If V = V1 ® Vs is a direct sum of representations Vi, Va, then there is a
G-isomorphism
Map(X, V) = Map(X, V1) @ Map(X, V3).

PROOF. Recall that every v € V has a unique expression of the form v = v; + v9. Define a
function

Map(X’V) —)Map(X)Vl)GEMap(XuVYQ)v f_>f1+f27
where f1: X — Vi and fo: X — V5 satisfy

f(x) = fi(z) + fa(z) (2 € X).

This is easily seen to be both a linear isomorphism and a G-homomorphism, hence a G-
isomorphism. O

PROPOSITION 2.28. Let X = X [[ X2 where X1, Xo C X are closed under the action of G.
Then there is a G-isomorphism

Map(X, V) = Map(X1,V) ® Map(Xs, V).

PRrOOF. Let j1: X3 — X and jo: X9 — X be the inclusion maps, which are G-maps.
Then given f: X — V', we have two functions fr: X — V (k = 1,2) given by

folz) = {f(:r) if z € X,

0 otherwise.
Define a function
Map(X, V) = Map(X1,V) — Map(X2,V);  f— fi+ fo.

This is easily seen to be a linear isomorphism. Using the fact that X is closed under the action
of GG, we see that
(9 - k=9"fr:
SO
g-(i+tf)=9 -Hitg:fo
Therefore this map is a G-isomorphism. O

These results tell us how to reduce an arbitrary generalized permutation representation to
a direct sum of those induced from a transitive G-set X and an irreducible representation V.
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Exercises on Chapter 2

2-1. Consider the function o: Dg, — GL¢(C?) given by
oar(zer +yes) = ("wer + (" yes,  oarp(wer +yes) = ("yer + (" "zes,

where 0y = 0(g) and ¢ = e2/ Show that this defines a 2-dimensional representation of Dy,
over C. Show that this representation is irreducible and determine kero.

2-2. Show that there is a 3-dimensional real representation 6: Qg — GLg(R?) of the quater-
nion group Qg for which

Oi(ze1 + yea + zez) =  xey — yea — zes,

0;(xer + yea + zez) = —xer + yea — zes.
Show that this representation is not irreducible and determine ker 6.
2-3. Consider the 2-dimensional complex vector space

V = {(x1,29,23) € C3: 2y + 29 + 23 = 0}.

Show that the symmetric group S3 has a representation p on V defined by

Po (21,22, 23) = (To-1(1), To—1(2), Ta—1(3))
for o € S3. Show that this representation is irreducible.

2-4. If p is a prime and G is a non-trivial finite p-group, show that there is a non-trivial
1-dimensional representation of G. More generally show this holds for a finite solvable group.

2-5. Let X = {1,2,3} = 3 with the usual action of the symmetric group Ss;. Consider
the complex permutation representation of S associated to this with underlying vector space
V =CJ[3].
(i) Show that the invariant subspace
VS ={veV:c-v=0vVoe S3}
is 1-dimensional.
(ii) Find a 2-dimensional Sz-subspace W C V such that V =V @ W.
(iii) Show that W of (ii) is irreducible.
(iv) Show that the restriction W lff of the representation of S3 on W to the subgroup
H ={e,(12)} is not irreducible.

(v) Show that the restriction of the representation W l}gg of S3 on W to the subgroup
K ={e,(123),(132)} is not irreducible.

2-6. Let the finite group G act on the finite set X and let C[X] be the associated complex
permutation representation.

(i) If the action of G on X is transitive (i.e., there is exactly one orbit), show that there
is a 1-dimensional G-subspace C{vx } with basis vector

vx = Z z.
zeX
Find a G-subspace Wx C C[X] such that C[X] = C{vx} ® Wx.
(ii) For a general G-action on X, for each G-orbit Y in X use (a) to find a 1-dimensional
G-subspace Vy and another Wy of dimension (|Y'| — 1) such that
CX|=W, &Wy, & &V, & Wy,

where Y7, ...,Y, are the distinct G-orbits of X.
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2-7. If p: G — GLg(V) is an irreducible representation, prove that the contragredient repre-
sentation p*: G — GLg (V") is also irreducible.



CHAPTER 3

Character theory

3.1. Characters and class functions on a finite group

Let G be a finite group and let p: G — GL¢(V) be a finite dimensional C-representation
of dimension dim¢ V' = n. For g € G, the linear transformation py: V' — V will sometimes be
written g- or g. The character of g in the representation p is the trace of g on V, i.e.,

Xp(g) =trpg =trg.

We can view X, as a function x,: G — C, the character of the representation p.
DEFINITION 3.1. A function 8: G — C is a class function if for all g, h € G,
O(hgh™") = 6(9),
i.e., 0 is constant on each conjugacy class of G.

PRrRoOPOSITION 3.2. For all g,h € G,

Xp(hgh™) = x,(9)-

Hence x,: G — C is a class function on G.

Proor. We have
Phgh—1 = PO Pg © Pt = Pro Pg O pj,
and so
Xp(hgh™") = trpr 0 pg o p, " = tr pg = x,(9)- O

EXAMPLE 3.3. Let G = S3 act on the set 3 = {1,2,3} in the usual way. Let V = C[3] be
the associated permutation representation over C, where we take as a basis e = {e1, e2, eg} with
action

g€ = €o(j)-
Let us determine the character of this representation p: S3 — GL¢(V).

The elements of S3 written using cycle notation are the following:

1, (12), (23), (13), (123), (132).

The matrices of these elements with respect to e are

010 1 00 0 01 0 01 010
I3, |1 0 Of, (0 O 1], (0 1 O, |1 O O], |0 O 1
0 0 1 010 1 00 010 1 00

Taking traces we obtain
Xp(1) =3, Xp(12) = xp(23) = xp(13) = 1, x,(123) = x,(132) =0.
Notice that we have x,(g) € Z. Indeed, by Proposition 2.24 we have

PROPOSITION 3.4. Let X be a G-set and p the associated permutation representation on
C[X]. Then

Xp(9) =|X9 = |{z € X : g- ¢ = x}| = the number of elements of X fixed by g.

29
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The next result sheds further light on the significance of the character of a G-representation
over the complex number field C and makes use of linear algebra developed in Section 1.3 of
Chapter 1.

THEOREM 3.5. For g € G, there is a basis v = {v1,...,v,} of V consisting of eigenvectors
of the linear transformation g.

PROOF. Let d = |g|, the order of g. For v € V,
(g% —Idy)(v) = 0.

Now we can apply Lemma 1.14 with the polynomial f(X) = X? — 1, which has d distinct roots
in C. 0

There may well be a smaller degree polynomial identity satisfied by the linear transformation
g on V. However, if a polynomial f(X) satisfied by ¢g has deg f(X) < d and no repeated linear
factors, then f(X)[(X? —1).

COROLLARY 3.6. The distinct eigenvalues of the linear transformation g on 'V are dth roots
of unity. More precisely, if dy is the smallest natural number such that for allv € V,

(g% — 1dy)(v) = 0,

then the distinct eigenvalues of g are dyth roots of unity.
PROOF. An eigenvalue A (with eigenvector vy # 0) of g satisfies

(¢* —1dv)(vx) =0,

hence
(A —1)vy = 0. O

COROLLARY 3.7. For any g € G we have

n
Xo(9) = YA
j=1
where A1,..., A\, are the n eigenvalues of py on V, including repetitions.
COROLLARY 3.8. For g € G we have

Xo(97") = xp(9) = X+ (9)-

Proor. If the eigenvalues of p, including repetitions are A1, ..., \,, then the eigenvalues of
pg-1 including repetitions are easily seen to be )\1_1, ..., A, 1. But if ¢ is a root of unity, then
¢"t=¢, and so x,(97) = x,(g)- The second equality follows from Proposition 2.14. O

Now let us return to the idea of functions on a group which are invariant under conjugation.
Denote by G, the set G and let G act on it by conjugation,

g-x=grg .

The set of all functions G. — C, Map(G., C) has an action of G given by
(9-a)(z) = algzg™)

for a € Map(G,,C), g € G and x € G.. Then the class functions are those which are invari-
ant under conjugation and hence form the set Map(G,, C)® which is a C-vector subspace of
Map(G., C).
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PROPOSITION 3.9. The C-vector space Map(Ge, C)® has as a basis the set of all functions
Ac: G, — C for C a conjugacy class in G, defined by

Ac(z) 1 ifxeC,
€Tr) =
¢ 0 ifz¢cC.

Thus dime Map(G., C)% is the number of conjugacy classes in G.

PROOF. From the proof of Theorem 2.18, we know that a class function a: G, — C
function can be expressed uniquely in the form

o= Z 04
z€G,
for suitable a, € G.. But
g-a= Z az(g-0z) = Z Az0gpg—1 = Z Agzg—10z-
zeGe. z€G, zeGe

Hence by uniqueness and the definition of class function, we must have

Appg-1 =0z (g € G,z € Ge).

grg

Hence,

a:ZaCZ<5I,
C

zeC
where for each conjugacy class C' we choose any element ¢y € C' and put ac = a.,. Here the
outer sum is over all the conjugacy classes C' of G. We now find that

Aczz(sx

zeC

and the rest of the proof is straightforward. O

We will see that the characters of non-isomorphic irreducible representations of GG also form
a basis of Map(G., C)%. We set C(G) = Map(G., C)“.

3.2. Properties of characters

In this section we will see some other important properties of characters.

THEOREM 3.10. Let G be a finite group with finite dimensional complex representations
p: G — GL¢(V) and 0: G — GL¢(W). Then

(a) xp(e) = dime V' and for g € G, [xo(9)] < Xp(€)-
(b) The tensor product representation p ® o has character
Xp@o = XpXo>
ie., forg e @,
Xpwo(9) = Xo(9)Xo(9)-

(c) Let 7: G — GL¢(U) be a representation which is G-isomorphic to the direct sum of
pando, soU =V eW. Then

Xr = Xp T Xo»
ie., for g € G,
X+ (9) = xp(9) + Xo(9)-
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PrOOF. (a) The first statement is immediate from the definition. For the second, using
Theorem 3.5, we may choose a basis v = {v1,...,v.} of V for which pgup = Apvy, where Ay is
a root of unity (hence satisfies [\g| = 1). Then

-
X ()] = 1D Al <D 1l =7 = xp(e).
k=1 k=1
(b) Let g € G. By Theorem 3.5, there are bases v = {vy,...,v,} and w = {wy,...,ws} for V
and W consisting of eigenvectors for p, and o, with corresponding eigenvalues Aq,..., A\, and
[, -, ts. The elements v; ® w; form a basis for V' ® W and by the formula of Equation (2.1),
the action of g on these vectors is given by

(p®0)g - (vi @ wj) = Aipjvi @ w;.
Finally Corollary 3.7 implies

r(p®0)g =D Nittj = xp(9)X0 (9)-
4,3
(¢) For g € G, choose bases v = {v1,...,v,} and w = {wy,...,ws} for V and W consisting
of eigenvectors for p, and o, with corresponding eigenvalues A1,..., A, and p1,...,us. Then
vUW = {v1,..., 0, w1,...,ws} is a basis for U consisting of eigenvectors for 7, with the above
eigenvalues. Then

Xr(g) =trmg=X 4+ XN+ pu+ -+ ps = Xp(9) + X0 (9). O

3.3. Inner products of characters

In this section we will discuss a way to ‘compare’ characters, using a scalar or inner product
on the vector space of class functions C(G). In particular, we will see that the character of
a representation determines it up to a G-isomorphism. We will again work over the field of
complex numbers C.

We begin with the notion of scalar or inner product on a finite dimensional C-vector space
V. A function (| ): V x V — C is called a hermitian inner or scalar product on V if for
v, 01,09, w € V and z1, 29 € C,

(LLin) (z101 + zova|w) = z1(vi|w) + z2(va|w),
(RLin) (w]z1v1 + 22v2) = Z1(w|v1) + Z2(w|v2),
(Symm) (vjw) = (wlv),
(PoDe) 0 < (v|v) € R with equality if and only if v = 0.
A set of vectors {vy,..., v} is said to be orthonormal if
e =is =1y e

We will define an inner product ( | )g on C(G) = Map(G.,, C)%, often writing ( | ) when the
group G is clear from the context.

DEFINITION 3.11. For a, 3 € C(G), let

(eB)a

e Z

geG

PROPOSITION 3.12. (| ) = (| )g is an hermitian inner product on C(G).
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PROOF. The properties LLin, RLin and Symm are easily checked. We will show that PoDe

holds. We have
(afa) = |G| Z ol9) el Z a(9)
geG geG

with equality if and only if a(g) = 0 for all g € G. Hence («|a) satisfies PoDe. O

Now let p: G — GL¢(V) and 6: G — GL¢(W) be finite dimensional representations
over C. We know how to determine (x,|xs)c from the definition. Here is another interpreta-
tion of this quantity. Recall from Proposition 2.15 the representations of G on W ® V* and
Homg (V, W); in fact these are G-isomorphic, W @ V* = Homg(V, W). By Proposition 2.16, the
G-invariant subspaces (W @ V*)¢ and Homg (V, W)© are subrepresentations and are images of
G-homomorphisms e1: W ®@ V* — W ® V* and e3: Home(V, W) — Hom¢(V, W).

PROPOSITION 3.13. We have

(xolxp)e = trer = trea.

PROOF. Let g € G. By Theorem 3.5 and Corollary 3.7 we can find bases v = {v1,...,v,}

for V.and w = {wy,...,ws} for W consisting of eigenvectors with corresponding eigenvalues
Ay, A and pq, ..., ps. The elements w; ® v] form a basis for W ® V* and moreover g acts
on these by

(0 ® p")g(w; ® ) = pihiw; ® v],
using Proposition 2.14. By Corollary 3.7 we have

w(0© )y = >k = (1) 2) = x0(0)xo(o):

By definition of €1, we have

1
tre; = el Ztr 0@ p), ,G| > x6(9)x0(9) = (xolxp)-

geG

Since g9 corresponds to €1 under the G-isomorphism
W @ V* =2 Home (V, W),
we obtain tre; = tres. O
COROLLARY 3.14. For irreducible representations p and 0,

1 if p and 6 are G-equivalent,

(xolxp) = {

0 otherwise.
PrRoOOF. By Schur’s Lemma, Theorem 2.8,

1 if p and 8 are G-equivalent,

dimy Homy (V W) =
0 otherwise.

Since e is the identity on Homy (V, W)Y, the result follows. O
Thus if we take a collection of non-equivalent irreducible representations {p1,..., p,}, their
characters form an orthonormal set {Xx,,,...,X,,} in C(G), i.e.,

(Xp¢|Xp]-> = 0ij.
By Proposition 3.9 we know that dimg C(G) is equal to the number of conjugacy classes in G.

We will show that the characters of the distinct inequivalent irreducible representations form a
basis for C(G), thus there must be dim¢ C(G) such distinct inequivalent irreducibles.
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THEOREM 3.15. The characters of all the distinct inequivalent irreducible representations of
G form an orthonormal basis for C(G).

PROOF. Suppose o € C(G) and for every irreducible p we have (a|x,) = 0. We will show
that a = 0.
Suppose that p: G — GL¢(V) is any representation of G. Then define p,: V — V by

pa(v) =Y alg)pgv-
geG

For any h € G and v € V we have

palpnv) =Y alg)pg(pnv)

geG

= Ph Z a(9)pn-1gnv

geG

=pn | Y alh™ gh)pp-1gnv
geG

=pn | Y alg)pg

geG
= Phﬂa(v)-

Hence po, € Home (V, V)Y, i.e., py is G-linear.

Now applying this to an irreducible p with dim p = n, by Schur’s Lemma, Theorem 2.8, we
see that there must be a A € C for which p, = Aldy.

Taking traces, we have tr p, = nA. Also

tr po = ZGa(g) trpg = Qa(g)xp(g) = |G|(elxp)-

Hence we obtain
_ |G|
N dim¢ V
If (a|x,) = 0 for all irreducible p, then as p* is irreducible whenever p is, we must have p, = 0

(alxp)-

for every such irreducible p.
Since every representation p decomposes into a sum of irreducible subrepresentations, it is
easily verified that for every p we also have p, = 0 for such an a.
Now apply this to the regular representation p = pyeg on V' = C[G]. Taking the basis vector
e € C[G] we have
pale) =Y alg)pge =D alg)ge =Y alg)g.

geG geG geG

> alg)g=0

geG

But this must be 0, hence we have

in C[G] which can only happen if a(g) = 0 for every g € G, since the g € G form a basis of
C[G]. Thus a = 0 as desired.
Now for any a € C(G), we can form the function

T

o =a— Z(O‘b(pi)x,om

=1
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where p1,pa,...,pr is a complete set of non-isomorphic irreducible representation of G. For
each k£ we have

T

(@xpr) = (@lxpy) — Z(O‘|Xpi)(Xpi’ka)
=1

= (alxp) = Y _(@lxp.)di

i=1
= (04|ka) - (Oé‘ka) =0,

hence o/ = 0. So the characters x,, span C(G), and orthogonality shows that they are linearly
independent, hence they form a basis. ]

Recall Theorem 2.12 which says that any representation V' can be decomposed into irred-
ucible G-subspaces,

V=Vi® - ®V,.

THEOREM 3.16. Let V = V1 & --- @ Vi, be a decomposition into irreducible subspaces. If
pr: G — GL¢(Vy) is the representation on Vi, and p: G — GL¢ (V') is the representation on
V, then (Xplxpr) = (Xpil|Xp) is equal to the number of the factors V; G-equivalent to Vj,.

More generally, if also W = W1 &--- @ W, is a decomposition into irreducible subspaces with

or: G — GLc(Wy) the representation on Wy, and o: G — GL¢ (W) is the representation on
W, then

(XU‘ka) = (ka ‘XO’)

is equal to the number of the factors W; G-equivalent to Vi, and

(XplXo) = (XolXp)

= (XolX0r)
k

= (Xoulxp)-
4

3.4. Character tables

The character table of a finite group G is the array formed as follows. Its columns correspond
to the conjugacy classes of G while its rows correspond to the characters x; of the inequiva-
lent irreducible representations of G. The jth conjugacy class C; is indicated by displaying a
representative ¢; € C. In the (4, j)th entry we put x;(c;).

ol o e
x1 | xi(er) xile2) -+ xi(en)
xz2 | x2(c1)  xa2(e2) -+ xa(cn)
Yo | xnler) xnlea) o Xalen)

Conventionally we take ¢; = e and x1 to be the trivial character corresponding to the trivial
1-dimensional representation. Since x1(g) = 1 for g € G, the top of the table will always have
the form

‘ e ¢y - Cp
Y1 ‘ 1 1 --- 1
Also, the first column will consist of the dimensions of the irreducibles p;, x;(e).
For the symmetric group S3 we have
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e (12) (123)

xi|l 1 1
o |1 -1 1
ys|2 0 -1

The representations corresponding to the x; will be discussed later. Once we have the character
table of a group GG we can decompose an arbitrary representation into its irreducible constituents,
since if the distinct irreducibles have characters x; (1 < j < r) then a representation p on V
has a decomposition

VeV @---onV,,

where n;V; =2 V; @ --- @ V; means a G-subspace isomorphic to the sum of n; copies of the
irreducible representation corresponding to x;. Theorem 3.16 now gives n; = (x,|x;). The
non-negative integer n; is called the multiplicity of the irreducible V; in V. The following
irreducibility criterion is very useful.

PROPOSITION 3.17. If p: G — GL¢(V) is a non-zero representation, then V is irreducible
if and only if (X,|xp) = 1.

Proor. If V. =n1V1 @ --- @ n,V,, then by orthonormality of the y;,
(Xplxp) = anle anx; =33 nini(ulxg) =Y 0
(2] J

So (xplx,) = 1 if and only if nf + --- +n? = 1. Remembering that the n; are non-negative
integers we see that (x,|x,) = 1 if and only if all but one of the n; is zero and for some k,
r = 1. Thus V = V. and so is irreducible. ]

Notice that for the character table of S3 we can check that the characters satisfy this criterion
and are also orthonormal. Provided we believe that the rows really do represent characters we
have found an orthonormal basis for the class functions C(S3). We will return to this problem
later.

ExamMPLE 3.18. Let us assume that the above character table for S3 is correct and let
p = preg be the regular representation of S3 on the vector space V' = C[S3]. Let us take as a
basis for V the elements of S3. Then
poT =0T,
hence the matrix [p,] of p, relative to this basis has 0’s down its main diagonal, except when
o = e for which it is the 6 x 6 identity matrix. The character is y given by

6 ifoc=e,

x(0) = tr[ps] = {

0 otherwise.

Thus we obtain

1
(xplx1) = Z Xo(o =5 x6=1,
0653
1
(xplx2) = Z Xo(o = x6=1,
0653
1
(Xplx3) = Z Xp(o =56x2)=2.
oESs

Hence we have
ClSs|=ViaVad Vs V=V, & Vo ® 2Vs.
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In fact we have seen the representation V3 already in Problem Sheet 2, Qu. 5(b). It is easily
verified that the character of that representation is x3.

Of course, in order to use character tables, we first need to determine them! So far we do
not know much about this beyond the fact that the number of rows has to be the same as
the number of conjugacy classes of the group G and the existence of the 1-dimensional trivial
character which we will always denote by x1 and whose value is xi(g9) = 1 for ¢ € G. The
characters of the distinct complex irreducible representations of G are the irreducible characters

of G.

THEOREM 3.19. Let G be a finite group. Let x1,...,Xr be the distinct complex irreducible
characters and preg the reqular representation of G on C[G].

(a) Every complex irreducible representation of G occurs in C[G]. Equivalently, for each
irreducible character Xj, (Xp.eelXj) 7 0.
(b) The multiplicity nj of the irreducible V; with character x; in C[G] is given by

n; = dim(c V] = Xj(e).

So to find all the irreducible characters, we only have to decompose the regular representa-
tion!

ProOF. Using the formualae

(g) = G| ifg=e,
Xpres (9 0 if g=#£e,

we have

1
(Xprcg ‘X] Z Xprcg = @Xﬂrcg (e)X] (e) = X] (e) . |:|
geG

COROLLARY 3.20. We have
|G’ Zn - Z XPreg|Xj)2'
7j=1

The following result also holds but the proof requires some Algebraic Number Theory.

PROPOSITION 3.21. For each irreducible character xj, nj = (Xp.,|X;) divides the order of
G, ie., nj||G|.

The following row and column orthogonality relations for the character table of a group G
are very important.

THEOREM 3.22. Let x1,...,Xr be the distinct complex irreducible characters of G and e =
g1, ---,9r be a collection of representatives for the conjugacy classes of G and for each k, let
Cc(gr) be the centralizer of gy.

(a) Row orthogonality: For 1 <i,j <,

ZXz gr) Xg gk

’CG gk = (XZ‘XJ) = 51]

(b) Column orthogonality: For1<i,j <r

"),
| Ca(9:)] v

k=1
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PROOF.
(a) We have

6 XZ|X] ‘G’ ZX%

geG

[since the conjugacy class of gi contains |G|/| Ca(gr)| elements]

Z Xi gk Xg gk
| Ca(gw)]

(b) Let ¢s: G — C be the function given by

1 if g is conjugate to gs,
%(9) = . . .
0 if g is not conjugate to gs.

By Theorem 3.15, there are A\ € C such that

Q;Z)s = Z )\ka:-
k=1

But then A\; = (¢5]x;). We also have

(Wlxs) = =S @)

geG
_ Z d)s gk XJ
| Ca(gr)l
_ Xj(gs>
| Ca(gs)]’

hence

X] gs
Z|

Thus we have the required formula

— X (9¢)X; (95)

(53 = Ws =
t dj (gt) = |CG(95)|

3.5. Examples of character tables

Equipped with the results of the last section, we can proceed to find some character tables.
For abelian groups we have the following result which follows from what we have seen already
together with the fact that in an abelian group every conjugacy class has exactly one element.

PROPOSITION 3.23. Let G be a finite abelian group. Then there are |G| distinct complex
wrreducible characters, each of which is 1-dimensional. Moreover, in the reqular representation
each irreducible occurs with multiplicity 1, i.e.,

C[G]gvl@'--@v]q.
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EXAMPLE 3.24. Let G = (go) = Z/n be cyclic of order n. Let ¢, = 2T/ the ‘standard’
primitive n-th root of unity. Then for each £ =0,1,...,(n — 1) we may define a 1-dimensional
representation pp: G — C* by

pi(gh) = GF.
The character of pg is x given by
xi(95) = G-

Clearly these are all irreducible and non-isomorphic.

Let us consider the orthogonality relations for these characters. We have

1 n—1
Ocklxw) = — > xil96)xk(95)
r=0
1 n—1 L
=L GGy
r=0
1 n
= — Z 1 = — = 1.
n n
For 0 <k </¢ < (n—1) we have
1 n—1
(xlxe) = — D xi(g6)xe(gp)
r=0
1 n—1 L
== Gk
r=0

n—1
_1 S ctk-or
n,r=0

By row orthogonality this sum is 0. This is a special case of the following identity which is often
used in many parts of Mathematics.

LEMMA 3.25. Let d € N, m € Z and (g = 2™/, Then

dicg””: d ifd|m,
o 0 otherwise.

PROOF. We give a proof which does not use character theory!
If dtm, then (J* # 1. Then we have

d—1 d—1
Gy g =Sty
r=0 r=0

hence
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and so
d—1
S =
r=0
If d | m then
d—1 d—1
Sar=Yi-a -
r=0 r=0

As a special case of Exercise 3.24, consider the case where n = 3 and G = (go) = Z/3. The
character table of G is

e 90 g3
x1|1 1 1
x2 |1l G &
xs |l G G

EXAMPLE 3.26. Let G = (ag, bp) be abelian of order 4, so G = Z/2 x Z/2. The character
table of G is as follows.

€ qo b() aobo

x1=xo [1 1 1 1
X10 1 -1 1 -1
Xo01 1 1 -1 -1
X11 1 -1 -1 1

ExXAMPLE 3.27. The character table of the quaternion group of order 8, g, is as follows.

1 -1 i j k
vi|]l 1 1 1 1
vi |1 1 -1 -1
j|1 1 -1 1 -1
Yie | 1 1 -1 1
2|2 =2 0 0

PRrROOF. There are 5 conjugacy classes:

{1}’ {_1}7 {i’ _i}v {j7 _j}v {kv _k}
As always we have the trivial character y;. There are 3 homomorphisms Qg — C* given by
pi(i") =1 and pi(j) = pi(k) = -1,
pi(§") =1 and p;(i) = pi(k) = -1,
pe(k”) =1 and pk(i) = p(j) = —1.
These provide three 1-dimensional representations with characters xj, x;j, xx taking values
xi(i") =1 and xi(j) = xi(k) = —1,
xi(3") =1 and x;j() = xi(k) = -1,
xk(k") =1 and xk(i) = xx(j) = -1
Since |Qs| = 8, we might try looking for a 2-dimensional complex representation. But the defini-
tion of Qg provides us with the inclusion homomorphism j: Qg — GL¢(C?), where we interpret
the matrices as taken in terms of the standard basis. The character of this representation is xo
given by
x2(1) =2, x2(=1) = =2, xa(£i) = x2(£j) = x2(+k) = 0.
This completes the determination of the character table of Qg. O
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ExaMPLE 3.28. The character table of the dihedral group of order 8, Dsg, is as follows.
e o2 a B af
vill 1 1 1 1
a1l 1 1 -1 -1
x3|/1 1 -1 1 -1
1
2

Y4 1 -1 -1 1
s 2 0 0 0

PROOF. The elements of Dg are
e,a,0?, 03, 3,a0,03,a°4
and these satisfy the relations
at=e=0% Baf=a"'
The conjugacy classes are the sets

{6}7 {a2}’ {a7a3}7 {ﬂv QQB}, {aﬂ,agﬁ}.
There are two obvious 1-dimensional representations, namely the trivial one p; and also pa,
where

pg(&) =1, pQ(ﬂ) = -1
The character of po is determined by
xe(a") =1, xo(fa’) = —1.

A third 1-dimensional representation comes from the homomorphism p3: Dg — C* given by

p3(a) = =1, p3(B) = 1.
The fourth 1-dimensional representation comes from the homomorphism py: Dg — C* for
which

pa(a) = =1, pa(B) = —1.

The characters x1, x2, x3, x4 are clearly distinct and thus orthonormal.
Before describing x5 as the character of a 2-dimensional representation, we will determine
it up to a scalar factor. Suppose that

xs(e) = a, x5(a?) =b, xs(a) = ¢, x5(8) =d, x5(Ba) =e

for a,b,c,d,e € C. The orthonormality conditions give (xs5|x;) = d;5. For j = 1,2,3,4, we
obtain the following linear system:

1122QZ 0
11 2 -2 -2 0
(3.1) 11 —2 2 —2 2_0
11 -2 =2 2] |0 0

which has solutions
b=—-a, c=d=e=0.
If x5 is an irreducible character we must also have (xs5|xs) = 1, giving

1 a®
1==(a®>+d%) = —,
sl@+a) =7
and so a = +2. So we must have the stated bottom row. The corresponding representation
appears in Example 2.6 where it is viewed as a complex representation which is easily seen to

have character xs. O
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REMARK 3.29. The groups Qg and Dg have identical character tables even though they
are non-isomorphic! This shows that character tables do not always distinguish non-isomorphic
groups.

ExaMPLE 3.30. The character table of the symmetric group Sy, is as follows.

e (12) (12)(34) (123) (1234)

[1] 6] [3] [8] [6]
Yi| 1 1 1 1 1
ol 1 -1 1 1 —1
ys| 3 1 -1 0 ~1
xal| 3 -1 -1 0 1
xs| 2 0 2 -1 0

PRroOF. Recall that the conjugacy classes correspond to the different cycle types which are
represented by the elements in the following list, where the numbers in brackets [ | give the sizes
of the conjugacy classes:

e [1], (12) [6], (12)(34) [3], (123) [8], (1234) [6].

So there are 5 rows and columns in the character table. The sign representation sign: Sy — C*
is 1-dimensional and has character

x2(e) = x2((12)(34)) = x2(123) =1 and x2(12) =x2(1234) = —1.

The 4-dimensional permutation representation py4 corresponding to the action on 4 = {1,2, 3,4}
has character xz, given by

X5, (0) = number of fixed points of o.
So we have
Xﬁ4(€) =4, Xﬁ4((1 2)(3 4)) = Xﬁ4(1 234) =0, Xﬁ4(1 23) =1, Xﬁ4(1 2) =2
We know that this representation has the form
Cl4] =C[4]> e W
where W is a 3-dimensional S4-subspace whose character xs is determined by
X1+ Xx3= Xpas
hence
X3 = Xps — X1-
So we obtain the following values for x3
xs(e) =3, x3((12)(34)) = x3(1234) = -1, x3(123) =0, x3(12) = 1.

Calculating the inner product of this with itself gives

1
(X3|X3):ﬂ(9+6+3+0+6):17

and so x3 is the character of an irreducible representation.

From this information we can deduce that the two remaining irreducibles must have dimen-
sions ny,ns for which

ni+ni=24—1-1-9=13,
and thus we can take ny = 3 and ny = 2, since these are the only possible values up to order.
If we form the tensor product py ® p3 we get a character y4 given by
xa(9) = x2(9)x3(9),
hence the 4-th line in the table. Then (x4|x4) = 1 and so x4 really is an irreducible character.
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For x5, recall that the regular representation preg has character x,,,, decomposing as

Xpree = X1+ X2 +3x3 + 3x4 + 2x5,

hence we have
1

X5 =5 (Xpreg — X1 — X2 — 3X3 — 3X4) ,

which gives the last row of the table. O

Notice that in this example, the tensor product p3 ® ps which is a 6-dimensional represen-
tation that cannot be irreducible. Its character x,;g,; must be a linear combination of the

irreducibles,
5

Xps®ps = Z(Xm@ﬂs |XJ)XJ"
=1

Recall that for g € Sy,
Xps@ps (9) = Xps (9)Xps (9)-

For the values of the coefficients we have

1
(XP3®05’X1):ﬁ(6+0—6+0—|—0):07

1

(Xpsops|x2) = 57 (6+0—-6+0+0) =0,
1

(Xps@ps |X3) = ﬂ(18+0+6+0+0) =1,

1
(Xp3®p5’X4) = ﬂ(18+0+6+0+0) =1,

1
(Xps@ps [x5) = 57 (1240 =124+ 0+40) = 0.

Thus we have
Xpz®ps = X3 1 X4

In general it is hard to predict how the tensor product of representations decomposes in terms
of irreducibles.

3.6. Reciprocity formulae

Let H < G, let p: G — GL¢(V) be a representation of G and let 0: H — GL¢(W) be a
representation of H. Recall that the induced representation o Tfl is of dimension |G/ H | dim¢ W,
while the restriction p l% has dimension dimc V. We will write x, Lg and Yo Tg for the
characters of these representations. First we show how to calculate the character of an induced
representation.

LEMMA 3.31. The character of the induced representation o Tg is given by

|
Xo 1% @) =177 > Xelz'ga).
zeG

gExHz!

PROOF. See [3, §16]. O

EXAMPLE 3.32. Let H = {e,a,a?,a3} < Dg and let 0: H — C* be the 1-dimensional
representation of H for which
o(aF) =ik

Decompose the induced representation o Tgs into its irreducible summands over the group Ds.
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PROOF. We will use the character table of Dg given in Example 3.28. Notice that H < Dy,
hence for € Dg we have xHz™' = H. Let x = xo TI[;S be the character of this induced
representation. We have

x(g)=% > XolzT'ga)

x€Dg
gexHz !
1 _ .
1 Z Yo(z7tgx) ifge H,
- z€Dg
0 ifg¢ H.

Thus if g € H we find that

1
1 (4)(0(@) + 4xg(a3)) if g = a,a?,
1 .
x9)=17 (8xw(a?)) if g = a?,
1 .
1 (8xs(€)) if g=ce.
Hence we have
i+i3=0 ifg=a,a?
(o) = —2 if g =a?,
A if g =e,
0 ifg¢ H.

Taking inner products with the irreducible characters x; we obtain the following.

1

(XIx1)py = g (2=2+040+0) =0,
1

(XIx2)py = g (2=2+0+0+0) =0,
1

(XIx3)ps = §(2—2+0+0+0) =0,
1

(XIxa)ps = 5 (2=2+040+0) =0,
1

(XIxs)py = g (4+4+040+0) = 1.

Hence we must have x = x5, giving another derivation of the representation ps. O

THEOREM 3.33 (Frobenius Reciprocity). There is a linear isomorphism
Homeg(W 15, V) = Homy (W, V |%).
Equivalently on characters we have
(Xo 1 Ixp)a = (XolXp L5 i
PROOF. See [3, §16]. O

ExXaAMPLE 3.34. Let o be the irreducible representation of S3 with character xs and un-
derlying vector space W. Decompose the induced representation W Tg; into its irreducible
summands over the group Sy.

PROOF. Let
w Tgﬁg n1 V1 @ naVo @ ngVz ® nyVy © nsVs.
Then
_ Sa _ Sy
n; = (Xj’Xo Ts3)54 = (Xj i5'3 ’XU)Sa'



3.7. REPRESENTATIONS OF SEMI-DIRECT PRODUCTS 45

To evaluate the restriction x; lgg we take only elements of Sy lying in S3. Hence we have

m= (00 18 s, = 5 (240-2) =0,
my = (x2 131 [xo)sy = 5 (1:240+ 1 (-2) =0,
ns = (s 184 o)y = § (324040 (-2) =1,
m= (0 18 s, = § (3 24040-(-2) =1,
ms = (x5 1 [xo)sy = 5 (2-2 404 —2-(-1)) =2 =1
Hence we have
Wig= Ve Ve O

3.7. Representations of semi-direct products

Recall the notion of a semi-direct product G = N x H; this has N<G, H < G, HNN = {e}
and HN = NH = (G. We will describe a way to produce the irreducible characters of G from
those of the groups N <G and H < G.

PROPOSITION 3.35. Let ¢: Q — G be a homomorphism and let p: G — GL¢ (V) be a
representation of G. Then the composite p*p = po @ is a representation of Q on V. Moreover,
if ©*p is irreducible over Q, then p is irreducible over G.

PROOF. The first part is clear.
For the second, suppose that W C V is a G-subspace. Then for h € ) and w € W we have

(P p)hw = pyyw € W.
Hence W is a @-subspace. By irreducibility of ¢*p, W = {0} or W = V', hence V is irreducible
over G. g

The representation ¢*p is called the representation on V induced by ¢ and we often denote
the underlying @-module by ¢*V. If j: Q — G is the inclusion of a subgroup, then j*p = p lg,
the restriction of p to Q.

In the case of G = N x H, there is a surjection 7: G — H given by

m(nh)=h (n€ N, he H),

as well as the inclusions i: N — G and j: H — G. We can apply the above to each of these
homomorphisms.
Now let p: G — GL¢(V') be an irreducible representation of the semi-direct product G =

N x H. Then *V decomposes as

TV =Wo oW,
where W}, is a non-zero irreducible N-subspace. For each g € G, notice that if x € N and
w € Wy, then

px(pgw) = PzgW = PgPyg—1ggW = pgw,

for w' = p,-1,,w. Since g~'zg € g7’ Ng = N,

gWh = {pgw : w e W1}

is an N-subspace of ¢*V. If we take

Wy = Zpgwg:wg€W1 ,
geG
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then we can verify that W is a non-zero N-subspace of i*V and in fact is also a G-subspace of
V. Since V is irreducible, this shows that V' = Wj.
Now let

le{hEH:hwlzwl}gH.

Then we can verify that Hy < H < G. The semidirect product
Gi=NxH ={nheG:neN,he H} <G
also acts on Wy since for nh € G7 and w € Wh,
PrhW = prppw = ppw’ € Wy

where w” = ppw; hence W is a Gi-subspace of V lgl. Notice that by the second part of
Proposition 3.35, W is irreducible over (G1.

LEMMA 3.36. There is a G-isomorphism
Wi Tglg V.
PROOF. See the books [1, 2]. O

Thus every irreducible of G = N x H arises from an irreducible representation of N which
extends to a representation (actually irreducible) of such a subgroup N x K < N x H = G for
K < H but to no larger subgroup.

ExXAMPLE 3.37. Let Dy, be the dihedral group of order 2n. Then every irreducible repre-
sentation of Dy, has dimension 1 or 2.

PrROOF. We have Dg, = N x H where N = (a) =2 Z/n and H = {e,3}. The n distinct
irreducibles p; of N are all 1-dimensional by Example 3.24. Hence for each of these we have
a subgroup Hp < H such that the action of N extends to IV x Hj and so the corresponding
induced representation Vj Tgi" is irreducible and has dimension |Ds, /(N x Hy)| = 2/|Hy|.
Every irreducible of Ds,, occurs this way. O

For n = 4, it is a useful exercise to identify the irreducibles in the character table in this
way.

Exercises on Chapter 3

3-1. Determine the characters of the representations in Qu. 1,2,3 of Chapter 2.

3-2.  Let p.: G — GL¢(C[G.]) denote the permutation representation associated to the

1

conjugation action of G on its own underlying set G, i.e., g-x = grg™". Let x. = x,. be the

character of pe.

(i) For € G show that the vector subspace V, spanned by all the conjugates of x is a
G-subspace. What is dim V.7
(ii) For g € G show that x.(g) = |Cg(g)| where Cg(g) is the centralizer of ¢ in G.
(iii) For any class function a € C(G) determine (a|xc).
(iv) If x1,...,xr are the distinct irreducible characters of G and p1, ..., p, are the corre-
sponding irreducible representations, determine the multiplicity of p; in C[G,].
(v) Carry out these calculations for the groups Ss, S4, A4, Ds, Qs.

3-3. Let G be a finite group and H < G a subgroup. Consider the set of cosets G/H as a G-set
with action given by g - *H = gz H and let p be the associated permutation representation on

C[G/H].
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(i) Show that for g € G,

Xp(9) = {zH € G/H : g € xHx 1}

(ii) If H <« G (i.e., H is a normal subgroup), show that

ifg¢ H,

(@) =1"
Xeld if g H.

|G/ H|

(iii) Determine the character x, when G = Sy (the permutation group of the set {1,2,3,4})

3-4. Let p: G — GL¢(W) be a representation and let p;j: G — GL¢(Vj) (4

and H = S5 (viewed as the subgroup of all permutations fixing 4).

1,...,7) be

the distinct irreducible representations of G with characters x; = x,,-

(i) For each i, show that ¢;: W — W is a G-linear transformation, where

(i)

(iii)

(iv)

(v)

() = Xile)
=T

Z mpgw-

geG
Let W € W be non-zero G-subspaces such that

WZWl,l@“‘@Wl,sl@WQJ@“'@WQ,SQ@"‘@Wr,l@“‘@Wr,sr

and W, is G-isomorphic to Vj. Show that if w € W, then g;(w) € W .
By considering for each pair j,k the restriction of ¢; to a G-linear transformation
s Wi — Wj g, show that if w € Wj;, then

w
0
Deduce that ime; = W1 @ --- Wi ;.
[Remark: The subspace W; = imeg; is called the subspace associated to the irreducible
pi and depends only on p and p;. Consequently, the decomposition W = W1 & ---d W,
is called the canonical decomposition of W. Given each Wj, there are many differ-

ent ways to decompose it into irreducible G-isomorphic to V;, hence the original finer
decomposition is non-canonical.]

Show that
&i
E;0&; = 0

For the group S5, use these ideas to find the canonical decomposition for the regular
representation C[S3]. Repeat this for some other groups and non-irreducible represen-
tations.

B ifi=j,

Ei(w)

otherwise.

ifi=3j,

otherwise.

3-5. Let A4 be the alternating group and ¢ = 2mi/3 ¢ .

(i)

(i)

Verify the orthogonality relations for the character table of A4 given below.

e (12)(34) (123) (132)

[1] [3] [4] [4]
x1| 1 1 1 1
x2 | 1 1 ¢ ¢t
X3 | 1 1 ¢t¢
X4 | 3 -1 0 0

Let p: Ay — GL¢(V) be the permutation representation of A, associated to the
conjugation action of A4 on the set X = A,. Using the character table in (i), express V'
as a direct sum n1 V1 ®noVo®ngVadngVy, where V; denotes an irreducible representation
with character ;.
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(iii) For each of the representations V;, determine its contragredient representation V;* as a
direct sum n1 Vi @ naVa @ n3Vs & nyVy.

(iv) For each of the representations V; ® Vj, determine its direct sum decomposition n1V; @
n2Va @ n3Vs @ nyViy.



CHAPTER 4

Some applications to group theory

In this chapter we will see some applications of representation theory to Group Theory.

4.1. Characters and the structure of groups

In this section we will give some results relating the character table of a finite group to its
subgroup structure.
Let p: G — GL¢ (V) be a representation for which dim¢ V' = n. Define the subset

kerx, = {g € G : xp(9) = xo(e)}
PROPOSITION 4.1. ker x, = ker p and hence ker x, is a normal subgroup of G.

PROOF. For g € ker x,, let v.={v1,...,v,} be a basis of V' consisting of eigenvectors of py,
S0 pgU = Agvy for suitable A\, € C, and indeed each A is a root of unity and so has the form
A\, = e'* for t;, € R. Then

Xp(g) = Z Ak
k=1

Recall that for t € R, e = cost + isint. Hence

n n
Xo(9) =Y costy +i Y sinty.
k=1 k=1
Since x,(e) = n,

n
Z costp =n,
k=1

which can only happen if each costy = 1, but then sinty = 0. So we have all A\ = 1 which
implies that p, = Idy. Thus ker x, = ker p as claimed. O

Now let x1,..., X, be the distinct irreducible characters of G and r = {1,...,r}.
PROPOSITION 4.2. (,_; ker x = {e}.

PROOF. Set K = (,_; ker x;; < G. By Proposition 4.1, for each k, ker x; = ker p, hence
N < G. Indeed, since N < ker py, there is a factorisation of py: G — GL¢(V%),

G % G/K ™ GLe(V),

where p: G — G/K is the quotient homomorphism. As p is surjective, it is easy to check
that p) is an irreducible representation of G/K, with character x},. Clearly the xj are distinct
irreducible characters of G/K and n;, = xx(e) = x},(eK) are the dimensions of the corresponding
irreducible representations.
By Corollary 3.20, we have
ni+-+n=|G
since the x are the distinct irreducible characters of G. But we also have
ni+---+n<|G/K]|

49



50 4. SOME APPLICATIONS TO GROUP THEORY
since the x) are some of the distinct irreducible characters of G/K. Combining these we have

|G| < |G/K| which can only happen if |G/K| = |G|, i.e., if K = {e}. So in fact

-
m ker x = {e}. O
k=1

PROPOSITION 4.3. A subgroup N < G is normal if and only it has the form

N = ﬂ ker xx
keS

for some subset S Cr.

PROOF. Let N <« G and suppose the quotient group G/N has s distinct irreducible repre-
sentations oy : G/N — GL¢(Wy) (k=1,...,s) with characters xj. Each of these gives rise to
a composite representation of G

ol GL G/N 25 GLe(Wy)

and again this is irreducible because the quotient homomorphism ¢: G — G/N is surjective.
This gives s distinct irreducible characters of G, so each Xo, is actually one of the x;.
By Proposition 4.2 applied to the quotient group G/N,

S S
m ker oy, = m ker i = {eN},
k=1 k=1

hence since ker o}, = ¢~ ! ker oy, we have

S S
ﬂ ker xor = ﬂ ker o, = N.
k=1 k=1

Conversely, for any S C r, (,cgker x; <G since for each k, ker x;, <G. g

COROLLARY 4.4. G is simple if and only if for every irreducible character xp # x1 and
e# g€ G, xk(g) # xr(e). Hence the character table can be used to decide whether G is simple.

COROLLARY 4.5. The character table can be used to decide whether G is solvable.
PROOF. G is solvable if and only if there is a sequence of subgroups
{6} :GgQGg_ld"'QGlﬂGo =G

for which the quotient groups Gs/Gsy1 are abelian. This can be seen from the character table.
For a solvable group we can take the subgroups to be the lower central series given by Gy = G,
and in general G(y41) = [G(5), G(4)]- It is easily verified that G, <G and G ,)/G 441 is abelian.
By Proposition 4.3 we can now check whether such a sequence of normal subgroups exists using
the character table. O

We can also define the subset

ker [x,| = {9 € G : [x,(9)| = xp(e) }-

PROPOSITION 4.6. ker |x,| is a normal subgroup of G.
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PRrOOF. If g € ker|y,|, then using the notation of the proof of Proposition 4.1, we find that

n n
|Xp(g)!2 = ]Zcostk —i—iZSintk]Q
k=1 k=1

( cos tk> + <Z sin tk)
k=1 k=1

n n
cos? ty, + Z sin® ¢y, + 2 Z (costy costy + sinty sinty)
k=1

k=1 1<k<t<n
=n+2 Z cos(ty — ty)
1<k<t<n
n 2
sn+2 5 =n+n(n—1)=n".

with equality if and only if cos(ty, —t¢) = 1 whenever 1 < k < £ < n. But if |x,(9)| = x,(e) =n,
then we must have n? < n? with equality if and only if cos(tx — t¢) = 1 for all k,£. Assuming
that t; € [0,2m) for each j, we must have t;, = tj, since we do indeed have equality here. Hence
p(g) = AgIdy. In fact we have |\;| = 1 since eigenvalues of p, are roots of unity.
If g1, g2 € ker |x,|, then
Pgrga = A1 Ago Idv
and so g1g2 € ker|x,|, hence ker |x,| is a subgroup of G. Normality is also easily verified. =~ O

4.2. A result on representations of simple groups

Let G be a finite non-abelian simple group (hence of order |G| > 1). We already know that
G has no non-trivial 1-dimensional representations.

THEOREM 4.7. An irreducible 2-dimensional representation of a finite non-abelian simple
group G s trivial.

PROOF. Suppose we have a non-trivial 2-dimensional irreducible representation p of G. By
choosing a basis we can assume that we are considering a representation p: G — GL¢(C?). We
can form the composite detop: G — C* which is a homomorphism whose kernel is a proper
normal subgroup of G, hence must equal G. Hence p: G — SL¢(C?), where

SLc(C?) = {A € GLg(C?) : det A = 1}.

Now notice that since p is irreducible and 2-dimensional, Proposition 3.21 tells us that |G|
is even (this is the only time we have actually used this result!) Now by Cauchy’s Lemma,
Theorem A.13, there is an element ¢ € G of order 2. Hence p; € SL¢(C?) also has order 2 since
p is injective. Since p; satisfies the polynomial identity

p? — Iy = O,

its eigenvalues must be +1. By Theorem 3.5 we know that we can diagonalise p;, hence at least
one eigenvalue must be —1. If one eigenvalue were 1 then for a suitable invertible matrix P we

1 0
Pp, Pl =
Pt [O _1]

implying det p; = —1, which contradicts the fact that det p, = 1. Hence we must have —1 as a
repeated eigenvalue and so for suitable invertible matrix P,

would have

_ -1 0
Pp P 12[ 0 _1]2—12
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and hence
pr =P 1 (-L)P = —1L.
For g € G,
Patg—1 = Pgprpg = pg(—L2)py ' = —I2 = py,

and since p is injective, gtg~t = t. Thus e # t € Z(G) = {e} since Z(G) < G. This provides a
contradiction. OJ

4.3. A Theorem of Frobenius

Let G be a finite group and H < G a subgroup which has the following property:
Forallge G—H,gHg ' N H = {e}.

Such a subgroup H is called a Frobenius complement.

THEOREM 4.8 (Frobenius’s Theorem). Let H < G be a Frobenius complement and let

K=G-|JgHg'CQG,
geG

the subset of G consisting of all elements of G which are not conjugate to elements of H. Then
N = K U{e} is a normal subgroup of G which is the semidirect product G = N x H.

Such a subgroup N is called a Frobenius kernel of G.
The remainder of this section will be devoted to giving a proof of this theorem using Char-
acter Theory. We begin by showing that

(4.1) K| =

First observe that if e # g € aHx ' NyHy ™!, then e # 2~ lgr € H Nz 'yHy 'z the latter
can only occur if z7'y € H. Notice that the normalizer Ng(H) is no bigger than H, hence
Ng(H) = H. Thus there are exactly |G|/|Ng(H)| = |G|/|H| distinct conjugates of H, with
only one element e in common to two or more of them. So the number elements of G which are
conjugate to elements of H is

G
i H1 =D 1.
Hence,
G| Gl
K| =|G| - (|H -1)—-1=
K| = 1G]~ (Bl = 1)~ 1= 5 -

Now let o € C(H) be a class function on the group H. We can define a function @: G — C
by

a(g) =

a(zgr™t) ifzgr—'e H,
a(e) ifge K.

This is well defined and also a class function on GG. We also have

(4.2) a=a 1§ —ale)(xe 15 —x),

where we use the notation of Qu. 4 in the Problems. In fact, xg T?I —XlG is the character of a
representation of G.
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Given two class functions «, 3 on H,

i 1 Y-
(@h)e = i g;}a(g)ﬂ(g)
_ 1 (K| + 1)a(e)B(e) + Z a(9)B(9)
|G‘ geG—-N
R S Y LS B P VY
G | E©FE + 5 %H (h)B(h)

[by Equation (4.1)]

-7 (Z a<h>6<h>)

heH
= (&|B)n-
For y an irreducible character of H,
XIX)e = (xIx)m =1
by Proposition 3.17. Also, Equation (4.2) implies that

X = ijXjG,
J

where m; € Z and the X]G are the distinct irreducible characters of G. Using Frobenius Reci-
procity 3.33, these coefficients m; are given by

mj = (XIx§)a = (XS 1% =0

since X,XJG % are characters of H. As x(e) = x(e) > 0, X is itself the character of some

representation p of G, i.e., X = x,. Notice that

N ={g€G:xp(9) = xp(e)} = kerp.
Hence, by Proposition 4.1, N is a normal subgroup of G.
Now H NN = {e} by construction. Moreover,
INH| > [H|[IN| = |G,

hence NH = NH = G. So G = N x H. This completes the proof of Theorem 4.8.
An equivalent formulation of this result is the following which can be found in [3, Chapter 6].

THEOREM 4.9 (Frobenius’s Theorem: group action version). Let the finite group G
act transitively on the set X, and suppose that each element g # e fizes at most one element of
X, ie., | X9 < 1. Then

N={geG:|X=0}U{e}

is a normal subgroup of G.

PRrROOF. Let x € X be fixed by some element of G not equal to the identity element e, and
let H = Stabg(z). Then for k € G — H, k - x # x has

Stabg(k - x) = k Stabg(2)k™! = kHE™!.

Ife#ge HNkHk™', then g stabilizes  and k - z, but this contradicts the assumption on the
number of fixed points of elements in G. Hence H is a Frobenius complement. Now the result
follows from Theorem 4.8. O
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EXAMPLE 4.10. The subgroup H = {e, (12)} < S5 satisfies the conditions of Theorem 4.8.
Then
U gHg ™' ={e, (12),(13),(23)}
gESs
and N = {e,(123),(132)} is a Frobenius kernel.

Exercises on Chapter 4

4-1. Let p: G — GL¢(V) be a representation.
(i) Show that the sets

kerx, = {9 € G : x,(9) = xp(e)} C G,
ker |x,| = {9 € G : |x,(9)| = xp(e)} € G,

are normal subgroups of G for which ker x, < ker |x,| and ker x, = ker p.
[Hint: Recall that for t € R, e = cost + isint.]
(ii) Show that the commutator subgroup [ker |x,|, ker |x,|] of ker [x,| is a subgroup of ker x,.

4-2. Let G be a finite group and X = G/H the finite G-set on which G acts transitively with
action written g - kH = gkH for g,k € G. Let & be the associated permutation representation
on C[X].
(i) Using the definition of induced representations, show that £ is G-isomorphic to §f1 Tg,
where ff{ is the trivial 1-dimensional representation of H.
(ii) Let Wx C C[X] be the G-subspace of Qu. 2.7(i) and € the representation on Wx. Show
that xp = x¢— ch’ where X1G is the character of the trivial 1-dimensional representation
of G.
(iii) Use Frobenius Reciprocity to prove that (xg|x{)a = 0.

4-3. Continuing with the setup in Qu. 4.3 with the additional assumption that | X| > 2, let
Y = X x X be given the associated diagonal action ¢ - (z1,22) = (9- 21,9 - x2) and let o be the
associated permutation representation on C[Y]. The action on X is said to be doubly transitive
or 2-transitive if, whenever (x1,x2), (2}, 25) € Y with 21 # x9 and | # ), there is a g € G for
which g - (z1,22) = (2], 25).
(i) Show that x» = x¢?, i.e., show that for every g € G, x,(g9) = Xg(g)Q.
(ii) Show that the action on X is 2-transitive if and only if the action on Y has exactly
two orbits.
(iii) Show that the action on X is 2-transitive if and only if (xo|x{)c = 2.
(iv) Show that the action on X is 2-transitive if and only if 6 is irreducible.

4-4. The following is the character table of a certain group G of order 60, where the numbers in
brackets [ ] are the numbers in the conjugacy classes of G, xy is the character of an irreducible
representation p; and a = (1 ++/5)/2, 3= (1 —/5)/2.

g1 =€eq g2 g3 g4 gs

1 [0 [15) [12] [12
X1 1 1 1 1 1
X2 5 -1 1 0 0
X3 4 1 0 -1 -1
X4 3 -1 a p
X5 a b c d e
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Determine the dimension of the representation ps.

Use row orthogonality to determine ys.

Show that G is a simple group.

Decompose each of the contragredient representations p? as a direct sum of the irred-
ucible representations py.

Decompose each of the tensor product representations ps ® p; as a direct sum of the
irreducible representations pg.

Identify this group G up to isomorphism.






APPENDIX A

Some group theory

A.1. The Isomorphism and Correspondence Theorems

The three Isomorphism Theorems and the Correspondence Theorem are fundamental results
of Group Theory. We will write H < G and N <G to indicate that H is a subgroup and N is a
normal subgroup of G.

Recall that given a normal subgroup N <G the quotient group G/N has for its elements the
distinct cosets

gN={gneG:ne N} (geq).
Then the natural homomorphism
m: G— G/N; mw(g)=gN
is surjective with kernel kerm = N.

THEOREM A.1 (First Isomorphism Theorem). Let ¢: G — H be a homomorphism with
N = kerg. Then there is a unique homomorphism @: G/N — H such that pom = .
Equivalently, there is a unique factorisation

¢0:GL G/NZH.

. ':717

H

where all the arrows represent group homomorphisms.

In diagram form this becomes

THEOREM A.2 (Second Isomorphism Theorem). Let H < G and N <G. Then there is an
isomorphism

HN/N 2 H/(HNN); hn+<— h(HNN).

THEOREM A.3 (Third Isomorphism Theorem). Let K <G and N <G with N <« K. Then
K/N < G/N is a normal subgroup, and there is an isomorphism

G/K = (G/N)/(K/N); gK « (gN)(K/N).

THEOREM A.4 (Correspondence Theorem). There is a one-one correspondence between sub-
groups of G containing N and subgroups of G/N, given by
H«—— n(H)=H/N,
Q — Q.
where
m'Q={geG:7(g) =gN € Q}.
Moreover, under this correspondence, H <G if and only if m(H) < G/N.

57
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A.2. Some definitions and notation
Let G be a group.
DEFINITION A.5. The centre of G is the subset
Z(G)={ce G:gc=cg Vg € G}.
This is a normal subgroup of G, i.e., Z(G) < G.
DEFINITION A.6. Let g € G, then the centralizer of g is
Calg) ={ce€ G:cg=ygc}.
This is a subgroup of G, i.e., Cg(g) < G.
DEFINITION A.7. Let H < G. The normalizer of H in G is
Ng(H)={ceG:cHc ' = H}.

This is a subgroup of G containing H; moreover, H is a normal subgroup of Ng(H), i.e.,
H <aNg(H).

DEFINITION A.8. G is simple if its only normal subgroups are G and {e}. Equivalently, it
has no non-trivial proper subgroups.

DEFINITION A.9. The order of G, |G|, is the number of elements in G when G is finite, and
oo otherwise. If g € G, the order of g, |g|, is the smallest natural number n € N such ¢" = e
provided such a number exists, otherwise it is co. Equivalently, |g| = | (¢) |, the order of the
cyclic group generated by g. If G is finite, then every element has finite order.

THEOREM A.10 (Lagrange’s Theorem). If G is a finite group, and H < G, then |H| divides
|G|. In particular, for any g € G, |g| divides |G]|.

DEFINITION A.11. Two elements x,y € G are conjugate in G if there exists g € G such that

y=grg .

The conjugacy class of x is the set of all elements of G conjugate to x,
2% ={yeG:y=grg " for some g € G}.
Conjugacy is an equivalence relation on G and the distinct conjugacy classes are the distinct
equivalence classes.
A.3. Group actions

Let G be a group (with identity element e = e) and X be a set. Recall that an action of
G on X is a rule assigning to each g € G a bijection ¢,: X — X and satisfying the identities

Pgh = Pg © Ph,

Pe; = ldx .
We will frequently make use of the notation

g-x = pg(x)

(or even just write gz) when the action is clear, but sometimes we may need to refer explicitly
to the action. It is often useful to view an action as corresponding to a function

O:GxX — X; p(g,2) = @g(x).
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It is also frequently important to regard an action of G as corresponding to a group homomor-
phism
¢: G — Perm(X); g+ g,
where Perm(X) denotes the group of all permutations (i.e., bijections X — X)) of the set X.
If n={1,2,...,n}, then S,, = Perm(n) is the symmetric group on n objects; S,, has order n!,
i.e., |Sp| = nl.
Given such an action of G on X, we make the following definitions:
Staby () = {g € G : p4(x) = x},
Orby,(z) = {y € X : for some g € G, y = pq4(2)},
XC={reX: gr=uxVgeG)

Then Stab,(z) is called the stabilizer of x and is often denoted Stabg(x) when the action is

clear, while Orby(z) is called the orbit of z and is often denoted Orbg(x). X¢ is called the
fized point set of the action.

THEOREM A.12. Let ¢ be an action of G on X, and x € X.

(a) Staby(x) is a subgroup of G. Hence if G is finite, then so is Stab,(z) and by Lagrange’s

Theorem, |Staby(x)| | |G|.
(b) There is a bijection

G/ Stab,(z) «— Orby,(x); gStaby(x) «— g-x = @4(x).
Furthermore, this bijection is G-equivariant in the sense that
hg Staby(z) < h- (g - x).
In particular, if G is finite, then so is Orby(x) and we have
| Orby ()| = |G|/| Staby(z)].

(c) The distinct orbits partition X into a disjoint union of subsets,

X = H Orby, ().

distinct
orbits

FEquivalently, there is an equivalence relation 5 on X for which the distinct orbits are

the equivalence classes and given by
Ty <~ forsomegeG,y=g-x.
Hence, when X is finite, then

X|= 3 [Orby(a)]

distinct
orbits

This theorem is the basis of many arguments in Combinatorics and Number Theory as well
as Group Theory. Here is an important group theoretic example, often called Cauchy’s Lemma.

THEOREM A.13 (Cauchy’s Lemma). Let G be a finite group and let p be a prime for which
p | |G|. Then there is an element g € G of order p.

PROOF. Let
X=G"={(g1,92,---,9) 1 9; €G, 192+ gp = €}
Let H be the group of all cyclic permutations of the set {1,2,...,p}; this is a cyclic group of
order p. Consider the following action of H on X:

v (glag2a s 7gp) = (97_1(1)797—1(2)7 s 797—1(;0))'
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It is easily seen that this is an action. By Theorem A.12, the size of each orbit must divide
|H| = p, hence it must be 1 or p since p is prime. On the other hand,

X|=|GP =0 (mod p),

since p | |G|. Again by Theorem A.12, we have

[X|= Y [Orby(a)],

distinct

orbits
and hence
> |Orby(x)| =0 (mod p).
distinct
orbits
But there is at least one orbit of size 1, namely that containing e = (eq, ..., eqg), hence,

Z |Orby(z)| = -1 (mod p).

distinct
orbits not
containing e

If all the left hand summands are p, then we obtain a contradiction, so at least one other orbit
contains exactly one element. But such an orbit must have the form

Orbu ((9,9,---,9)), ¢’ =ec.

Hence g is the desired element of order p. O

Later, we will meet the following type of action. Let k be a field and V' a vector space over
k. Let GLx(V) denote the group of all invertible k-linear transformations V' — V. Then for
any group G, a group homomorphism p: G — GLg (V') defines a k-linear action of G on V' by

g-v=p(g)(v).

This is also called a k-representation of G in (or on) V. One extreme example is provided by
the case where G = GLg (V) with p = Idgr, vy We will be mainly interested in the situation
where G is finite and k = R or k = C; however, other cases are important in Mathematics.

If we have actions of G on sets X and Y, a function ¢: X — Y is called G-equivariant or
a G-map if

p(gz) = gp(r) (9 € G,z e X).

An invertible G-map is called a G-equivalence (it is easily seen that the inverse map is itself
a a G-map). We say that two G-sets are G-equivalent if there is a G-equivalence between
them. Another way to understand these ideas is as follows. If Map(X,Y’) denotes the set of all
functions X — Y, then we can define an action of G by

(9-9)(x) = g(plg™ ).
Then the fixed point set of this action is
Map(X,Y)% = {¢: gp(g™~'x) = p(x) Vo, g} = {p : p(g2) = gp(x) Vo, g}.

So Map®(X,Y) = Map(X,Y)C is just the set of all G-equivariant maps.
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A.4. The Sylow theorems
The Sylow Theorems provide the beginnings of a systematic study of the structure of finite
groups. For a finite group G, they connect the factorisation of |G| into prime powers,

Td

|G| = pglpg2 .. .pd ,
where 2 < p1 < po < -+ < pg with pg prime, and r;, > 0, to the existence of subgroups of
prime power order, often called p-subgroups. They also provide a sort of converse to Lagrange’s
Theorem.

Here are the three Sylow Theorems. Recall that a proper subgroup H < G is mazimal if

it is contained in no larger proper subgroup; also a subgroup P < G is a p-Sylow subgroup if
|P| = p* where pF*1{]|G].

THEOREM A.14 (Sylow’s First Theorem). A p-subgroup P < G is mazimal if and only
if it is a p-Sylow subgroup. Hence every p-subgroup is contained in a p-Sylow subgroup.

THEOREM A.15 (Sylow’s Second Theorem). Any two p-Sylow subgroups P, P’ < G are
conjugate in G.

THEOREM A.16 (Sylow’s Third Theorem). Let P < G be a p-Sylow subgroup with |P| =
p*, so |G| = pFm where p t m. Also let n, be the number of distinct p-Sylow subgroups of G.
Then

(i) np =1 (mod p);
(ii) m=0 (mod ny).
Finally, we end with an important result on chains of subgroups in a finite p-group.
THEOREM A.17. Let P be a finite p-group. Then there is a sequence of subgroups
(}=P <P < <P =P
with |Py| = p* and P,_1 < Py, for 1 <k < n.

We also have the following which can be proved directly by the method in the proof of
Theorem A.13. Recall that for any group G, its centre is the normal subgroup
Z(G)={ceG:VgeqG, cg=ygc}<G.
THEOREM A.18. Let P be a non-trivial finite p-group. Then the centre of P is non-trivial,

ie., Z(P) # {e}.

Sylow theory seemingly reduces the study of structure of a finite group to the interaction
between the different Sylow subgroups as well as their internal structure. In reality, this is just
the beginning of a difficult subject, but the idea seems simple enough!

A.5. Solvable groups
DEFINITION A.19. A group G which has a sequence of subgroups
{e}=Hy<Hy < < Hy =G,
with Hy_1 < Hy, and Hy/Hy—q cyclic of prime order, is called solvable (soluble or soluable).

Solvable groups are generalizations of p-groups in that every finite p-group is solvable. A
finite solvable group G can be thought of as built up from the abelian subquotients Hy/Hj_1.
Since finite abelian groups are easily understood, the complexity is then in the way these sub-
quotients are ‘glued’ together.
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More generally, for a group G, a series of subgroups
G=Gy>G1>->G,={e}

is called a composition series for G if Gj41 <G for each j, and each successive quotient group
Gj/G it is simple. The quotient groups G;/G+1 (and groups isomorphic to them) are called
the composition factors of the series, which is said to have length r. Every finite group has
a composition series, with solvable groups being the ones with abelian subquotients. Thus, to
study a general finite group requires that we analyse both finite simple groups and also the ways
that they can be glued together to appear as subquotients for composition series.

A.6. Product and semi-direct product groups
Given two groups H, K, their product G = H x K is the set of ordered pairs
HxK={(h,k):he H, ke K}

with multiplication (hi, k1) - (he, k2) = (h1he, k1ks2), identity eq = (eq, ex) and inverses given
by (h, k)=t = (h=1 k71).

A group G is the semi-direct product G = N x H of the subgroups N, H if NG, H < G,
HNN ={e} and HN = NH = G. Thus, each element g € G has a unique expression g = hn
where n € N, h € H. The multiplication is given in terms of such factorisations by

(h1n1)(hang) = (hihs)(hy *nihans),

where hy 1n1h2 € N by the normality of N.
An example of a semi-direct product is provided by the symmetric group on 3 letters, Ss.
Here we can take
N =1{e,(123),(132)}, H={e,(12)}.
H can also be one of the subgroups {e, (13)},{e, (23)}.

A.7. Some useful groups

In this section we define various groups that will prove useful as test examples in the theory
we will develop. Some of these will be familiar although the notation may vary from that in
previous encounters with these groups.

A.7.1. The quaternion group. The quaternion group of order 8, (QQg, has as elements
the following 2 x 2 complex matrices:

+1, +i, +j, £k,

10 . [i o] . [o01 C
e R N S A )

A.7.2. Dihedral groups.

where

DEFINITION A.20. The dihedral group of order 2n, Doy, is generated by two elements «, 8
of orders |a| = n and || = 2 which satisfy the relation

Baf =a L.
The distinct elements of Doy, are
o, "B (r=0,...,n—1).

Notice that we also have o" = Ba™". A useful geometric interpretation of Dy, is provided by
the following.
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PROPOSITION A.21. The group D, is isomorphic to the symmetry group of a reqular n-
gon in the plane, with « corresponding to a rotation through 2m/n about the centre and [3
corresponding to the reflection in a line through a vertex and the centre.

A.7.3. Symmetric and alternating groups. The symmetric group on n objects S, is
best handled using cycle notation. Thus, if o € S, then we express o in terms of its disjoint
cycles. Here the cycle (i1 ig ... i) is the element which acts on the set n = {1,2,...,n} by
sending i, to i,+1 (if r < k) and ix to i1, while fixing the remaining elements of n; the length
of this cycle is k and we say that it is a k-cycle. Every permutation ¢ has a unique expression
(apart from order) as a composition of its disjoint cycles, i.e., cycles with no common entries.
We usually supress the cycles of length 1, thus (123)(46)(5) = (123)(46).

It is also possible to express a permutation o as a composition of 2-cycles; such a decompo-
sition is not unique, but the number of the 2-cycles taken modulo 2 (or equivalently, whether
this number is even or odd, i.e., its parity) is unique. The sign of o is the number

signo = (_1)number of 2—cycles'
THEOREM A.22. The function sign: S,, — {1, —1} is a surjective group homomorphism.

The kernel of sign is called the alternating group A, and its elements are called even per-
mutations, while elements of S, not in A,, are called odd permutations. Notice that |A,| =
|Snl/2 = nl/2. S, is the disjoint union of the two cosets e4,, = A, and TA, where 7 € S, is
any odd permutation.

Here are the elements of A3 and S35 expressed in cycle notation.

Ag: e=(1)(2)(3), (123) = (13)(12), (132) = (12)(13).
Sz: e, (123), (132), (12)e=(12), (12)(123) = (1)(23), (12)(132) = (2)(13).

A.8. Some useful Number Theory

In the section we record some number theoretic results that are useful in studying finite
groups. These should be familiar and no proofs are given. Details can be found in book [4] or
any other basic book on abstract algebra.

DEFINITION A.23. Given two integers a, b, their highest common factor or greatest common
divisor is the highest positive common factor, and is written (a,b). It has the property that
any integer common divisor of a and b divides (a,b).

DEFINITION A.24. Two integers a,b are coprime if (a,b) = 1.

THEOREM A.25. Let a,b € Z. Then there are integers r,s such that ra + sb = (a,b). In
particular, if a and b are coprime, then there are integers r,s such that ra + sb = 1.
More generally, if a1,...,a, are pairwise coprime, then there are integers ri,...,ry such
that
ria; + -+ rpa, = 1.

These results are consequences of the Fuclidean or Division Algorithm for Z.
EA: Let a,b € Z. Then there are unique q,r € Z for which 0 < r < |b| and a = qb + r.

It can be shown that in this situation, (a,b) = (b,r). This allows a determination of the
highest common factor of a and b by repeatedly using EA until the remainder r becomes 0,
when the previous remainder will be (a, b).
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Solutions

Chapter 1
1-1. W is clearly closed under addition and multiplication by real scalars. It is not closed under
multiplication by arbitrary complex scalars since for example, (i,7) € W but

Note that a typical element of W has the form (x + yi, —z + yi) for z,y € R.
6 is clearly R-linear. Sample bases are A = {(1,—1), (¢,4)} and B = {1,4}. Then

0(1,-1) =1, 0(i,1) =1,
hence the matrix is

Bl0la = Ll) })]

An R-basis for V' is C = {(1,-1), (¢,1), (i, —3), (=1, —1)} (note that (i, —i) = i(1,—1) and
(1,1) = i(4,4)). We can take the linear extension of § for which

O, —i) =10(1,—-1), ©O(-1,—-1)=16(3,1).
This agrees with the C-linear transformation

O(z,w) =z—1iw (z,weC).

1-2. Linearity is easy. We have the standard basis e = {ej1, €2, e3,e4} for which the matrix of

o is
00 1 0
oo o1
=110 0 0
01 00
Then

chary (X) = 2* =222 + 1= (2> = 1)* = (z — 1)*(z + 1)2.

The eigenvalues of this are 1, —1, each being a repeated root of the characteristic polynomial.
As eigenvectors we have

1 0 1 0
for eigenvalue 1: 0 , L ; for eigenvalue —1: , L
1 0 -1 0
0 1 0 -1

These form a basis for V. Moreover, the polynomial f(X) = X2 — 1 satisfies f(c)v = 0 for each
of these basis vectors, hence for all elements of V. Thus min,(X) = X2 — 1.

1-3. We have
chara(X) = X3 — 28X2 + 256X — 768 = (X — 12)(X — 8)%,
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hence the eigenvalues of A are 12,8 with 8 being a repeated root of the characteristic polynomial.
Eigenvectors for these are

(=5,3,1), (0,-3,1), (1,—2,0),
and these form a basis for C3. Hence the polynomial f(X) = (X —12)(X —8) satisfies f(A)v =0
for every v € C? and so mina(X) = f(X).

1-4. (i) The quotient space V/W is spanned by the image under the quotient map ¢: V —
V/W of the vector (0,1,0), i.e., ¢(0,1,0) = (0,1,0) + W. Hence a complement of W is the
subspace spanned by (0,1,0). More generally, any vector of the form v = (0,1,0) + w where
w € W spans a linear complement of W.

(ii) The quotient space V/W is spanned by the images under the quotient map ¢: V. — V/W
of the vectors (0,0,1,0),(0,0,0,1), hence a complement is the subspace spanned by these two
vectors which are also linearly independent.

(iii) The quotient space V/W is spanned by the images under the quotient map ¢: V. — V/W
of the vectors (0,0,1,0),(0,0,0,1), hence a complement is the subspace spanned by these two
vectors which are also linearly independent.

(iv) k=R, V = (R3)*, W = {a: a(es) = 0}. W has the elements e}, e} as a basis. The element
e; spans a 1-dimensional subspace U and {e}, e3, e} is a basis for V. Hence, U is a complement
of W.

1-5.  For any C-bilinear function F': V x V — C, there is a unique linear transformation
F': T2V — C for which F = F’ o 7. In particular, if F is alternating, then

Fllugv)=—-F(veu) (uveV),
and so F'(v ® v) = 0. Thus
V1 ® V1, V2 @ Ve, (V] ® Ve + v @v1) € ker F.

These three vectors are linearly independent in V®, hence dimker F/ > 3. But as F is not a
constant function, F’ is a non-zero linear transformation into a 1-dimensional vector space so
has im I/ = C. Thus
dimker F/ +1 = dim T2V = 4,
and so dimker F’ = 3. Thus {v1 ® v1,v2 ® va, (V] ® v2 + v ® v1)} is a basis for ker F’.
Similarly, {v1 ® v1,v2 ® ve, (V1 ® V2 + v2 ® v1)} is a basis for ker G'. If

weT?V —kerG' =T?V —ker F,
then
G'(w) = tF' (w)

for some t € C. Hence we have this identity for all w € T?V, giving G = tF as functions
VxV —C.

1-6. Notice that for any v € V', F(v,v) = 0. Now do an Induction on m as follows.

For m = 1, choose v1 to be any non-zero element of V. Then there is an element u € V for
which t = F(vy,u) # 0. Let vg = t~!u. Then F(vi,vs) = 1. Thus the result is established for
m = 1.

Suppose that the result is true whenever m = k. Then if m = k 4+ 1, we begin by choosing
any non-zero element v; of V' and a second element vy for which F'(vi,v2) = 1 (see the case
m = 1). The vectors vy, vy are linearly independent since if av; + bvg = 0, then

b= F(v1,av; + buy) = 0 = F(va, avy + bug) = a.

Now consider

W={weV:F(u,w)=0=F(v,w)} CV.
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It is easy to check that W is a C-subspace of V. Notice that W is a linear complement to the
2-dimensional subspace spanned by v1,ve. Moreover, for each non-zero w € W, thereisau € V
satisfying F'(w,u) # 0 and clearly u € W. Hence, the 2k-dimensional vector space W satisfies
the assumptions and by the Induction Hypothesis there is a basis {vs, v4, . .., Vogt1, Vogt2} With
the stated properties. Then {v1,ve,vs,v4, ..., Vog+1, Vok12} 1S a basis for V' with the required
properties. This demonstrates the Inductive step and proves the result by Induction.

Chapter 2

2-1. Showing that ¢ is a homomorphism should be routine; it is probably easiest to work with
matrices with respect to the basis {e1,ez2}.

Irreducibility is most easily shown by determining the character x, and then verifying that
(xolXo) = 1. However, the following ‘hands on’ approach works.

If W C C? is a Dy,-subspace then in particular it is closed under the action of o by . If W
is a non-trivial proper subspace then dimg W = 1, hence any non-zero w € W is an eigenvector
of the linear transformation o,. But the eigenvalues of o, are ¢ and (~! with eigenvectors e; and
e2. But oge; = ez and oges = e1, hence these vectors do not span 1-dimensional Da,-subspaces.
Hence no such W can exists and therefore o is irreducible. By inspection, ker o = {e}.

2-2. Relative to the basis {e1, ea,e3}, the corresponding matrices are easily seen to be

1 0 0 -1 0 0
fri= [0 —1 0], 04= 0 1 0
0 0 -1 0 0 -1

Straightforward calculations using the homomorphism property of a representation together
with the basic identities amongst the elements of (Jg now gives

-1 0 0 1 00
0ixk=| 0 -1 0|, 6£1=1({0 1 O
0 01 0 01

Each of the 1-dimensional subspaces V; = {te; : t € R} is closed under the action of all the
elements of Qg and R? =V}, @ Vo @ V3. Thus 6 is not irreducible. The kernel is

kerf = {1, —1}.

2-3. Linearity of each p, is trivial. Also, pgyoy = PoyPoy (01,02 € S3) since

Poios (x17 L2, x3) = (x(maz)—l(l) y L(o102)~1(2) x(maz)—l(S))
= (:L‘0_2—10_1—1(1), $U2—101—1(2), $0_2—10_1—1(3))
= oy Poy (71, T2, 73).
To show irreducibility, first note that any proper Ss-subspace has dimension 1 or 2, but in the
latter case we may find a complementary S3-subspace of dimension 1. We will show that there
are no 1-dimensional Ss-subspaces.

Suppose that W is a 1-dimensional S3-subspace. Then for any non-zero w € W, there is a
A € C such that

P(12)Ww = Aw.

It is easy to check that p(; 9) has eigenvalues 1 with corresponding eigenvectors vy = e1+e3—2e3
and v_ = e; — eg. Thus as candidates for W we have

U+:{t(61+62—263) ZtGC}, U_ :{t(el—eg) 2t€C}.
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But we also have

paz)(er+ ez —2e3) = (e3 +e2—2e1) ¢ Uy, pusyer —ez) =e3—ex ¢ U_.
So neither of these subspaces is closed under the action of (13), nor indeed under the action of

Ss.

2-4. From the known structure of a non-trivial finite p-group, there is a normal subgroup N <G
of index p, hence G/N = Z/p = p,, the group of p-th roots of unity in C*. Hence there is a
homomorphism G — G /N — C* with image equal to j,. This is equivalent to a non-trivial
1-dimensional representation of G.

If G is solvable, then there is a non-trivial abelian quotient G/ K for some K<G. If a prime p
divides |G/ K|, then there is a normal subgroup L<G/K of index p and so an isomorphism G —
ftp obtained as the composition of the evident homomorphisms G — G/K — (G/K)/L =8 Lp-
Thus there is a non-trivial 1-dimensional representation as in the case where G is a p-group.

2-5. (i) As a basis, take the Ss-set X = {e1, €2, ez} with action given by
0 e = eq(j)-

Ifve VS3, let v = x1e1 + z2eo + x3e3. For each o € S3 we have
To-1() = %j-

Using the elements o = (12), (13), (23) we deduce that
1 = X2 = T3.

Clearly any vector of the form t(e; + ez + e3) (t € C) lies in V3. Hence V3 is as stated and
in particular is 1-dimensional.

(ii) Use the Ss-subspace of Qu. 3,
W = {xlel + x9e9 + x3€63 : 1 + T2 + 73 = 0}.

(iii) This can be done by showing that the eigenspaces of an element such as (12) on W
are 1-dimensional but not closed under the action of S3. Alternatively, the character of the
representation p’ on W is given by

Xp' = Xp — X1:
Hence using the formula

Xp(0) = number of elements in X fixed by o

we have
sz(e) =3-1=2, xy((12)=1-1=0, Xp’((123)) =0-1=-1.

Then (x,|x,) =1, and so by Proposition 4.17 p’ is irreducible.

(iv) The 1-dimensional subspace spanned by vector e; — ey is closed under the action of H.
(v) Either find an eigenspace of the linear transformation p(; 23y which will give a 1-dimensional
K-subspace or check that the character of W ifg’ is not equal to 1, hence it cannot be irreducible
by Proposition 4.17.

2-6. This question involves similar ideas to Qu. 5.
(i) It is easy to see that C{vx} is a G-subspace. The vector subspace

WX:{Z%%:Z%:O}.

rzeX reX

is a complement of C{vx} and also a G-subspace of C[X].
(ii) View each C[Y] as a G-subspace of C[X].
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2-7. Let x be the character of p. From Corollary 4.8, the character x,« is given by
X+ (9) = Xp(9) = xp(97 1),

hence

(X IXp*) = |Cl¥| > X (9)xp (9)

geG
= yclz\ > x(9)x,+(9)

geG

= & 2 o)

geG

= |c1;| > xl9)x(9) = (xI)-

geG
Since p is irreducible,
(XpIxpr) = (XIX) =1
by Proposition 4.17, hence p* is also irreducible. It is possible to demonstrate this without using
characters.

Chapter 3
3-1. Using the basis {e1, €2}, we obtain matrices

owl =[G 2] =2 S

Then taking traces we have

Xo(@") =trjogr] ="+ (" =2cos2nr/n,  xo(a"B) = trjoarg] = 0.

3-2. Since that R C C, we can view this as giving a compler representation 0: Qg — GL¢(C?).
Using the standard basis {e1, €2, e3} we obtain matrices

1 0 0 -1 0 0 -1 0 0
(1] =13, [f4]= |0 -1 0|, [f4]=1| 0 1 0|, [fsx]=] O -1 0
0 0 -1 0 01 0 01

Taking traces we have
Xo(£1) =3, xo(£i) = xo(£]) = xo(£k) = —1.

3-3. Take a basis of V, e.g., {vi,v2} where
v = (1,-1,0), vs=(1,0,—1).

The elements e, (12), (123) of S5 give representatives of all of the conjugacy classes and so it
suffices to calculate the character of p on these elements. Using the above basis, we have the
following matrices

[pe] = I2, [P(12)] = [_(1] _ﬂ ) [P(123)] = [_1 _(1)] )

which have traces
Xple) =2, xp(12) =0, x,(123)=-1.
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3-4. (i) The conjugates of x form a basis and the number of them is also |G|/| Cg(x)| where
Cq () is the centralizer of . Hence dim¢ V; = |G|/| Cq(x)|.

(i) xc(g) is equal to the number of elements of G. fixed by g, but such elements are precisely
those for which gzg~! = z, i.e., those in Cg(g). Thus x.(g9) = | Ca(9)]-

(iii) We have

(alxe) = a7 Z

geG

= a1 2,001 Cely

gEG

P 233 |C'G' ICo(g)las)

=3 aly

where g1,...,g, is a list of representatives of all the distinct conjugacy classes of G, with g;
having |G|/| Cc(g;)| conjugates.
(iv) The multiplicity of p; in C[G,] is (xj|x.) and by part (iii) this is given by

(Xj‘Xc = Xc‘X] ZX] gz

(v) This is left as an exercise!
3-5. (i) We have
grH=2H <+<— a2 'ggH=eH <= geca 'Hz,

and so

Xp(9) = {zH € G/H : gzH = xH}| = |{zH € G/H : g € Hx"'}|.
(ii) If H <G, for each x € G, xHxz~' = H, so part (i) gives the result.
(iii) Writing G = S4 and H = S3, this becomes a special case of part (i) (but not (ii)!). It
suffices to calculate the character on the elements e, (12), (12)(34), (123), (1234) of Sy which

give representatives of all of the conjugacy classes of GG. Here it is useful to recall the well-known
formula

o(iviy ... ip)o = (o(iy) o(ia) ... o(iy)).

Also notice that the 4 distinct elements of G/H = Sy/Ss are eH, (14)H, (24)H, (34)H. Then

Xp(€) = |54/ S| =4, xp((12)) = [{eH, (34)H}| = 2,
Xp((12)(34)) = [0] =0, Xp((1234)) = 0] = 0,
Xp((123)) = [{eH}| = 1.
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3-6. (i) C-linearity is obvious. Let h € G and w € W. Then

gi(ppw) = |G\ ZXz )Pg(pPrw)

gEG
pghw
geG
X ( —=
‘ZG‘ Z Xi(9) Prpn-1gnW
geG

= Ph xile) Z Xi(9)pn-14nw

i€ —
= Ph X‘C(;’) > xi(hTgh) p-gpw

geG
Xile
= ph |é|) > xilg)pgw
geG
= ph&‘(w).

Thus €;(prw) = pre;(w) which shows that ; is G-linear.
(ii) Since W, is a G-subspace each py maps W, into itself. Hence, so does ;.
(ili) The G-linear transformation &;: W; — W;, satisfies the conditions of Schur’s Lemma,
hence there is a A € C such that
gi(w) = w  (w € Wjy).

We also have

/
&= ]G\ ZXI 9)pgw

geG
where p;: W; i, — Wjk is the restriction of p, to Wj k. Taking traces we have

Adimg W j, = tr g = tr p'g
gEG
|G‘ ZX@ Xp
geG
= xi(e)(Xilxp)-
Since x;(e) = dimg¢ W i, we have
A= (Xilxp) = ;-
Thus for w € Wjy, €;(w) is as stated.
(iv) By (iii), for any w € W, ¢(w) € W, hence
(w) gi(w) ifi=j,
gigj(w) =
" 0 otherwise.

(v) This is a straightforward exercise.

3-7. (i) The character table shown below is deduced by calculations such as the following in
which the identities (? = ¢! and 1 4 ¢ + ¢? = 0 are used:

(xalx3) = 112[1+3><1+4<g tac 1(] 12[4+4g2+4§—2]:é[1+§2+<]:0.
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e (12)(34) (123) (132)

1] [3] 4] [4]
1| 1 1 1 1
X2 | 1 1 ¢ ¢!
x3| 1 1 ¢t ¢
X4 | 3 -1 0 0

(ii) The character of this permutation representation is found using the formula x,(g) = | Z(g)|.
Hence

Xple) =12, x, ((12)(34)) =4, x, ((123)) = x,, ((132)) = 3.

Then n; = (xj]x,), so we obtain

1 412
= [12+43x4+4x34+4x3]= =4
ni 12[ +3X44+4X3+4X ] 12 ?
1 12
ngzﬁ[12+3x4+4x34+4><3€71] :ﬁ[2+4+cil] =1
1 12
ng =5 [1243x4+4x3¢ +4x3(] = 24+ (] =1,

1 12
ny= 5 Bx1243(-1) x44+0+0] = D B-1]=2.

So we have V =4V, @ Vo @ V3 @ 2V}.

(iii) We have x,+ = X;, hence Xpr = X1, Xp5 = X3, Xp5 = Xz and xp; = Xy Thus pj = py,
p5 = p3, p5 = p2 and pj = py.

(iv) Use the formula x,,,,(9) = xi(g)x;(g) to find the character of the tensor product p; ® p;.
Then express this as a linear combination x,,g,;, = n1x1 + -+ + naxa where ng = (Xp;00;1Xk)-
For example, when i = j = 4, Xp,0p,(9) = x4(g9)* and so

1 1
n1:1—2[32+3(—1)2><1+0+0] =1, n2:5[32+3(—1)2><1+0+0] =1,

1 1
n3zﬁ[32+3(_1)2xl+0+0] =1, n4zﬁ[3z+3(_1)3+0+0] =2.

Hence Vi@ Vi =V ® Vo ® V3 @ 2V},
There are some tricks that you may spot for reducing the amount of work, but doing all of
these is extremely tedious!

Chapter 4

4-1. (i) See Section 4.1 of Chapter 4 where it is shown that ker x, = ker p. From the definitions
we also have ker x, < ker|y,|.
(ii) From the proof of Proposition 5.5 we actually have

ker [x,| = {9 € G:3\; € C* s.t. pg = A\g1d}.

Indeed, Agp, = AgAn, hence the function A: ker|x,| — C* with A(g) = A, is a group homo-
morphism. Since C* is abelian, [ker |x,|, ker|x,|] < ker A. But

ker A ={g € G: py =1d} = ker p = ker x,,
hence [ker |x,|, ker |x,|] < ker x,.

4-2. (i) The underlying vector space of &/ is C with the trivial action of H and so the underlying
vector space of ff{ Tg is

Map(Gr,C)# = {f: G — C: f(zh) = f(x)Vx € G, h € H}.
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This is just the set of all functions G — C which are constant on right cosets of H, which is
in turn equivalent to the set of all functions G/H — C. Moreover, we have for the G-action,

g f(aH) = f(gzH).

This shows that the induced representation &f Tg is essentially the contragredient representa-
tion associated to C[G/H]. By Proposition 2.25, there is a G-isomorphism C[G/H|* = C[G/H],
so ¢ Tg is G-isomorphic to £.

(ii) By Ex. Sh. 2 Qu. 6(i), C[X] = Vx & Wx where Vx is G-isomorphic to the trivial 1-
dimensional representation of G. Hence by Theorem 4.10(c), x¢ = x§ + xo-

(iii) We have

G G. G
(xelxT)a = (xe = XTIXT)a
= (xelx®e — 6EFIxa

= (Xng 1% P —1 (by part (i) and orthonormality)
= (X§IH|X? 1) —1 (by Frobenius Reciprocity)

= (XenIxer)m — 1 (since x§ 1= xen)
=1-1=0, (by orthonormality)

giving the result.

4-3. (i) This follows from Proposition 2.20 and Theorem 3.10(b).
(ii) Clearly Y has the orbit {(z,z) : x € X} and also for every pair (z1,z2) € Y with z1 # 22,
the orbit

{9~ (w1,22) : g € G} = {(g1,922) : g € G}

By definition, X is 2-transitive if and only if these are the only orbits of Y.

(iii) By Qu. 4.3(iii) and Ex. Sh. 2 Qu. 6(ii), the trivial representation has multiplicity in o equal
to the number of orbits in Y.

(iv) Recall that by Corollary 3.14, 6 is irreducible if and only if (xg|xs) = 1. We have

= (xo + x1lx0 + x1)

= (xolxe) + (xalxe) — (xolx1) + (x1lx1)
= (xolxe) +2(xolx1) +1

= (xolxe) +1,

(Xp’Xp)

by Ex. Sh. 2 Qu. 6(iii).
An easy calculation also shows that
(XplXp) = (XpXplx1) = (Xolx1)-

So by (iii), (xp|xp) = 2 if and only if X is 2-transitive.
Combining these we now see that X is 2-transitive if and only if (xg|xg) = 1, i.e., 6 is
irreducible.

4-4. (i) We have
12 + 5% + 4% + 3% + o = |G| = 60,

giving a? = 9, hence a = 3.
(ii) Row orthogonality gives (x;|xs) = 0 if j = 1,2,3,4. After clearing denominators of |G| and
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bringing constants to the right hand sides we have the system of linear equations:
20b + 15¢ 4+ 12d + 12¢ = —3
—20b + 15¢ =-15
200 —12d — 12e = —12
— 15¢ + 12ad 4 123e = —9.
The first, second and third of these give
40b 4+ 15c = —15, —20b+ 15¢ = —15,
hence b = 0, ¢ = —1. The remaining equations now give

d+e=1, 2ad+ 20e = —4,
hence
V5d — \/5e = -5,

or

d—e=—b5.
Thus we have 2d =1 — /5, 2¢ = 1 + /5 and so d = 3, e = . This gives
b=0,c=-1,d=0, e=a.

(iii) For each of the characters x;, ker x; = {e}. Hence since every normal subgroup of G is an
intersection of such normal subgroups, the only normal subgroups are {e} and G, implying that
G is simple.

(iv) Xpt = Xy hence since all character values are real we see that Xp5 = X i.e., p; = pj.

(v) Here is an example. Suppose that ps ® pg = nip1 + -+ nsps. Then n; = (x;|x2x3). Thus

1 1
— _—20—2 - — 100+ 2 — 9
~ Ligo—2040/ =1 _ Lieo+o0=1

n3_60 — 4, n4_60 — 4,

1
— — 604 0] =1.
"5 = 5g [60+ 0]

Hence p2 ® p3 = 2p2 + p3 + pa + ps.
(vi) Up to isomorphism, the alternating group As is the only simple group of order 60.



